The Finite Element Method with Heat Transfer and Fluid Mechanics Applications

The Finite Element Method with Heat Transfer and Fluid Mechanics Applications
Title The Finite Element Method with Heat Transfer and Fluid Mechanics Applications PDF eBook
Author Erian A. Baskharone
Publisher Cambridge University Press
Total Pages 393
Release 2014
Genre Mathematics
ISBN 1107039819

Download The Finite Element Method with Heat Transfer and Fluid Mechanics Applications Book in PDF, Epub and Kindle

This textbook begins with the finite element method (FEM) before focusing on FEM in heat transfer and fluid mechanics.

The Finite Element Method with Heat Transfer and Fluid Mechanics Applications

The Finite Element Method with Heat Transfer and Fluid Mechanics Applications
Title The Finite Element Method with Heat Transfer and Fluid Mechanics Applications PDF eBook
Author Erian A. Baskharone
Publisher
Total Pages 373
Release 2014
Genre TECHNOLOGY & ENGINEERING
ISBN

Download The Finite Element Method with Heat Transfer and Fluid Mechanics Applications Book in PDF, Epub and Kindle

"This book is intended for advanced undergraduate and graduate students. The first four chapters are devoted to the introduction of the finite element concept. The focus of the book then covers two essential areas - heat transfer and fluid mechanics: topics with different finite element formulations. The heat transfer applications begin with the classical one-dimensional thin-rod problem, followed by a discussion of the two-dimensional heat transfer problem including a variety of boundary conditions. Finally, a complicated-geometry three-dimensional problem, involving a cooled radial turbine rotor, is presented, with the cooling passages treated as "heat sinks" in the finite element analysis. For fluid mechanics, the concept of "nodeless" degrees of freedom is introduced, with real-life fluid-flow applications. The time-dependent finite-element analysis topic is addressed through the problem of unsteady stator/rotor flow interaction within a turbomachinery stage. Finally, the concept of "virtually-deformable finite elements," as it relates to the problem of fluid-induced vibration, is explained in detail with many practical applications"--

The Intermediate Finite Element Method

The Intermediate Finite Element Method
Title The Intermediate Finite Element Method PDF eBook
Author Darrell W. Pepper
Publisher Routledge
Total Pages 619
Release 2017-11-01
Genre Science
ISBN 1351410121

Download The Intermediate Finite Element Method Book in PDF, Epub and Kindle

This book is a follow-up to the introductory text written by the same authors. The primary emphasis on this book is linear and nonlinear partial differential equations with particular concentration on the equations of viscous fluid motion. Each chapter describes a particular application of the finite element method and illustrates the concepts through example problems. A comprehensive appendix lists computer codes for 2-D fluid flow and two 3-D transient codes.

The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition

The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition
Title The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition PDF eBook
Author J. N. Reddy
Publisher CRC Press
Total Pages 515
Release 2010-04-06
Genre Science
ISBN 1420085980

Download The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition Book in PDF, Epub and Kindle

As Computational Fluid Dynamics (CFD) and Computational Heat Transfer (CHT) evolve and become increasingly important in standard engineering design and analysis practice, users require a solid understanding of mechanics and numerical methods to make optimal use of available software. The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition illustrates what a user must know to ensure the optimal application of computational procedures—particularly the Finite Element Method (FEM)—to important problems associated with heat conduction, incompressible viscous flows, and convection heat transfer. This book follows the tradition of the bestselling previous editions, noted for their concise explanation and powerful presentation of useful methodology tailored for use in simulating CFD and CHT. The authors update research developments while retaining the previous editions’ key material and popular style in regard to text organization, equation numbering, references, and symbols. This updated third edition features new or extended coverage of: Coupled problems and parallel processing Mathematical preliminaries and low-speed compressible flows Mode superposition methods and a more detailed account of radiation solution methods Variational multi-scale methods (VMM) and least-squares finite element models (LSFEM) Application of the finite element method to non-isothermal flows Formulation of low-speed, compressible flows With its presentation of realistic, applied examples of FEM in thermal and fluid design analysis, this proven masterwork is an invaluable tool for mastering basic methodology, competently using existing simulation software, and developing simpler special-purpose computer codes. It remains one of the very best resources for understanding numerical methods used in the study of fluid mechanics and heat transfer phenomena.

Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer
Title Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer PDF eBook
Author Ben Q. Li
Publisher Springer Science & Business Media
Total Pages 587
Release 2006-06-29
Genre Technology & Engineering
ISBN 1846282055

Download Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer Book in PDF, Epub and Kindle

Over the past several years, significant advances have been made in developing the discontinuous Galerkin finite element method for applications in fluid flow and heat transfer. Certain unique features of the method have made it attractive as an alternative for other popular methods such as finite volume and finite elements in thermal fluids engineering analyses. This book is written as an introductory textbook on the discontinuous finite element method for senior undergraduate and graduate students in the area of thermal science and fluid dynamics. It also can be used as a reference book for researchers and engineers who intend to use the method for research in computational fluid dynamics and heat transfer. A good portion of this book has been used in a course for computational fluid dynamics and heat transfer for senior undergraduate and first year graduate students. It also has been used by some graduate students for self-study of the basics of discontinuous finite elements. This monograph assumes that readers have a basic understanding of thermodynamics, fluid mechanics and heat transfer and some background in numerical analysis. Knowledge of continuous finite elements is not necessary but will be helpful. The book covers the application of the method for the simulation of both macroscopic and micro/nanoscale fluid flow and heat transfer phenomena.

An Introduction to the Finite Element Method

An Introduction to the Finite Element Method
Title An Introduction to the Finite Element Method PDF eBook
Author Junuthula Narasimha Reddy
Publisher
Total Pages 766
Release 2006
Genre Finite element method
ISBN 9780071244732

Download An Introduction to the Finite Element Method Book in PDF, Epub and Kindle

The book retains its strong conceptual approach, clearly examining the mathematical underpinnings of FEM, and providing a general approach of engineering application areas.Known for its detailed, carefully selected example problems and extensive selection of homework problems, the author has comprehensively covered a wide range of engineering areas making the book approriate for all engineering majors, and underscores the wide range of use FEM has in the professional world

Fundamentals of the Finite Element Method for Heat and Fluid Flow

Fundamentals of the Finite Element Method for Heat and Fluid Flow
Title Fundamentals of the Finite Element Method for Heat and Fluid Flow PDF eBook
Author Roland W. Lewis
Publisher John Wiley and Sons
Total Pages 357
Release 2008-02-07
Genre Science
ISBN 0470346388

Download Fundamentals of the Finite Element Method for Heat and Fluid Flow Book in PDF, Epub and Kindle

Heat transfer is the area of engineering science which describes the energy transport between material bodies due to a difference in temperature. The three different modes of heat transport are conduction, convection and radiation. In most problems, these three modes exist simultaneously. However, the significance of these modes depends on the problems studied and often, insignificant modes are neglected. Very often books published on Computational Fluid Dynamics using the Finite Element Method give very little or no significance to thermal or heat transfer problems. From the research point of view, it is important to explain the handling of various types of heat transfer problems with different types of complex boundary conditions. Problems with slow fluid motion and heat transfer can be difficult problems to handle. Therefore, the complexity of combined fluid flow and heat transfer problems should not be underestimated and should be dealt with carefully. This book: Is ideal for teaching senior undergraduates the fundamentals of how to use the Finite Element Method to solve heat transfer and fluid dynamics problems Explains how to solve various heat transfer problems with different types of boundary conditions Uses recent computational methods and codes to handle complex fluid motion and heat transfer problems Includes a large number of examples and exercises on heat transfer problems In an era of parallel computing, computational efficiency and easy to handle codes play a major part. Bearing all these points in mind, the topics covered on combined flow and heat transfer in this book will be an asset for practising engineers and postgraduate students. Other topics of interest for the heat transfer community, such as heat exchangers and radiation heat transfer, are also included.