Structural Phase Transitions in Layered Transition Metal Compounds

Structural Phase Transitions in Layered Transition Metal Compounds
Title Structural Phase Transitions in Layered Transition Metal Compounds PDF eBook
Author K. Motizuki
Publisher Springer Science & Business Media
Total Pages 309
Release 2012-12-06
Genre Science
ISBN 9400945760

Download Structural Phase Transitions in Layered Transition Metal Compounds Book in PDF, Epub and Kindle

The structural phase transition is one of the most fundamental problems in solid state physics. Layered transition-metal dichalcogenides provide us with a most exciting area for the study of structural phase transitions that are associated with the charge density wave (CDW). A large variety of structural phase transitions, such as commensurate and incommensurate transitions, and the physical proper ties related to the formation of a CDW, have been an object of intense study made for many years by methods employing modem microscopic techniques. Rather recently, efforts have been devoted to the theoretical understanding of these experimental results. Thus, McMillan, for example, has developed an elegant phenomenological theory on the basis of the Landau free energy expansion. An extension of McMillan's theory has provided a successful understanding of the successive phase transitions observed in the IT- and 2H-compounds. In addition, a microscopic theory of lattice instability, lattice dynamics, and lattice distortion in the CDW state of the transition-metal dichalcogenides has been developed based on their electronic structures. As a result, the driving force of the CDW formation in the IT- and 2H-compounds has become clear. Furthermore, the effect of lattice fluctuations on the CDW transition and on the anomalous behavior of various physical properties has been made clear microscopically.

Structural Phase Transitions in Layered Transition Metal Compounds

Structural Phase Transitions in Layered Transition Metal Compounds
Title Structural Phase Transitions in Layered Transition Metal Compounds PDF eBook
Author K Motizuki
Publisher
Total Pages 316
Release 1986-10-31
Genre
ISBN 9789400945777

Download Structural Phase Transitions in Layered Transition Metal Compounds Book in PDF, Epub and Kindle

Magnetic Properties of Layered Transition Metal Compounds

Magnetic Properties of Layered Transition Metal Compounds
Title Magnetic Properties of Layered Transition Metal Compounds PDF eBook
Author L.J. de Jongh
Publisher Springer Science & Business Media
Total Pages 430
Release 2012-12-06
Genre Science
ISBN 9400918607

Download Magnetic Properties of Layered Transition Metal Compounds Book in PDF, Epub and Kindle

In the last two decades low-dimensional (low-d) physics has matured into a major branch of science. Quite generally we may define a system with restricted dimensionality d as an object that is infinite only in one or two spatial directions (d = 1 and 2). Such a definition comprises isolated single chains or layers, but also fibres and thin layers (films) of varying but finite thickness. Clearly, a multitude of physical phenomena, notably in solid state physics, fall into these categories. As examples, we may mention: • Magnetic chains or layers (thin-film technology). • Metallic films (homogeneous or heterogeneous, crystalline, amorphous or microcristalline, etc.). • I-d or 2-d conductors and superconductors. • Intercalated systems. • 2-d electron gases (electrons on helium, semiconductor interfaces). • Surface layer problems (2-d melting of monolayers of noble gases on a substrate, surface problems in general). • Superfluid films of ~He or 'He. • Polymer physics. • Organic and inorganic chain conductors, superionic conductors. • I-d or 2-d molecular crystals and liquid crystals. • I-d or 2-d ferro- and antiferro electrics.

Phase Transitions in Low-Dimensional Transition Metal Compounds

Phase Transitions in Low-Dimensional Transition Metal Compounds
Title Phase Transitions in Low-Dimensional Transition Metal Compounds PDF eBook
Author
Publisher
Total Pages
Release 2006
Genre
ISBN

Download Phase Transitions in Low-Dimensional Transition Metal Compounds Book in PDF, Epub and Kindle

The materials in the scope of this dissertation belong to the domain where Peierls and Mott physics meet - in other words, both electron-phonon coupling and electronic correlations play an essential role in these systems. With 1T-TaSe2 a layered transition metal compound was investigated that can be regarded as a paradigm quasi-two-dimensional charge density wave (CDW) system. The appeal of this material certainly lies in the occurrence of a surface Mott metal-insulator transition, which is driven by CDW-induced changes of the electronic bandwidth and can thus be controlled simply by varying the temperature. In this thesis, a detailed examination of the electronic structure in the presence of the CDW is presented. The results of DFT calculations make it possible to identify a separated conduction band with a strongly reduced width compared to the undistorted state, which explains the rather unusual appearance of Mott physics in a 5d transition metal compound. This observation corroborates the Mott-Hubbard scenario with star-of-David clusters as relevant sites of the corresponding Hubbard picture. On the experimental side, clear evidence for the Mott transition at the surface of 1T-TaSe2 is given in form of angle-resolved photoemission data. This represents one of the few examples where one is able to observe the evolution of the spectral function while going through the transition by tuning the crucial ration U/W within the same single crystal. Compared to the charge-Peierls transition, its counterpart involving the spin degree of freedom - i.e., the spin-Peierls transition - must be considered a much rarer phenomenon. The compounds TiOCl and TiOBr studied in the course of this dissertation are, together with CuGeO3, the only known inorganic materials to exhibit this instability. In this thesis x-ray diffraction experiments provide direct evidence for the spin-Peierls nature of TiOCl, thus leading to a coherent spin-Peierls picture of the oxyhalides with two success.

Emergent States in Photoinduced Charge-Density-Wave Transitions

Emergent States in Photoinduced Charge-Density-Wave Transitions
Title Emergent States in Photoinduced Charge-Density-Wave Transitions PDF eBook
Author Alfred Zong
Publisher Springer Nature
Total Pages 234
Release 2021-09-17
Genre Science
ISBN 3030817512

Download Emergent States in Photoinduced Charge-Density-Wave Transitions Book in PDF, Epub and Kindle

This book advances understanding of light-induced phase transitions and nonequilibrium orders that occur in a broken-symmetry system. Upon excitation with an intense laser pulse, materials can undergo a nonthermal transition through pathways different from those in equilibrium. The mechanism underlying these photoinduced phase transitions has long been researched, but many details in this ultrafast, non-adiabatic regime still remain to be clarified. The work in this book reveals new insights into this phenomena via investigation of photoinduced melting and recovery of charge density waves (CDWs). Using several time-resolved diffraction and spectroscopic techniques, the author shows that the light-induced melting of a CDW is characterized by dynamical slowing-down, while the restoration of the symmetry-breaking order features two distinct timescales: A fast recovery of the CDW amplitude is followed by a slower re-establishment of phase coherence, the latter of which is dictated by the presence of topological defects in the CDW. Furthermore, after the suppression of the original CDW by photoexcitation, a different, competing CDW transiently emerges, illustrating how a hidden order in equilibrium can be unleashed by a laser pulse. These insights into CDW systems may be carried over to other broken-symmetry states, such as superconductivity and magnetic ordering, bringing us one step closer towards manipulating phases of matter using a laser pulse.

Two-Dimensional Transition-Metal Dichalcogenides

Two-Dimensional Transition-Metal Dichalcogenides
Title Two-Dimensional Transition-Metal Dichalcogenides PDF eBook
Author Alexander V. Kolobov
Publisher Springer
Total Pages 545
Release 2016-07-26
Genre Technology & Engineering
ISBN 3319314505

Download Two-Dimensional Transition-Metal Dichalcogenides Book in PDF, Epub and Kindle

This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.

Physics of New Materials

Physics of New Materials
Title Physics of New Materials PDF eBook
Author Francisco E. Fujita
Publisher Springer Science & Business Media
Total Pages 333
Release 2013-03-08
Genre Science
ISBN 3642468624

Download Physics of New Materials Book in PDF, Epub and Kindle

Physics of New Materials After the discoveries and applications of superconductors, new ceramics, amorphous and nano-materials, shape memory and other intelligent materials, physics became more and more important, comparable with chemistry, in the research and development of advanced materials. In this book, several important fields of physics-oriented new-materials research and physical means of analyses are selected and their fundamental principles and methods are described in a simple and understandable way. It is suitable as a textbook for university materials science courses.