New Sinc Methods of Numerical Analysis

New Sinc Methods of Numerical Analysis
Title New Sinc Methods of Numerical Analysis PDF eBook
Author Gerd Baumann
Publisher Springer Nature
Total Pages 411
Release 2021-04-23
Genre Mathematics
ISBN 303049716X

Download New Sinc Methods of Numerical Analysis Book in PDF, Epub and Kindle

This contributed volume honors the 80th birthday of Frank Stenger who established new Sinc methods in numerical analysis.The contributions, written independently from each other, show the new developments in numerical analysis in connection with Sinc methods and approximations of solutions for differential equations, boundary value problems, integral equations, integrals, linear transforms, eigenvalue problems, polynomial approximations, computations on polyhedra, and many applications. The approximation methods are exponentially converging compared with standard methods and save resources in computation. They are applicable in many fields of science including mathematics, physics, and engineering.The ideas discussed serve as a starting point in many different directions in numerical analysis research and applications which will lead to new and unprecedented results. This book will appeal to a wide readership, from students to specialized experts.

Numerical Methods Based on Sinc and Analytic Functions

Numerical Methods Based on Sinc and Analytic Functions
Title Numerical Methods Based on Sinc and Analytic Functions PDF eBook
Author Frank Stenger
Publisher Springer Science & Business Media
Total Pages 580
Release 2012-12-06
Genre Mathematics
ISBN 1461227062

Download Numerical Methods Based on Sinc and Analytic Functions Book in PDF, Epub and Kindle

Many mathematicians, scientists, and engineers are familiar with the Fast Fourier Transform, a method based upon the Discrete Fourier Transform. Perhaps not so many mathematicians, scientists, and engineers recognize that the Discrete Fourier Transform is one of a family of symbolic formulae called Sinc methods. Sinc methods are based upon the Sinc function, a wavelet-like function replete with identities which yield approximations to all classes of computational problems. Such problems include problems over finite, semi-infinite, or infinite domains, problems with singularities, and boundary layer problems. Written by the principle authority on the subject, this book introduces Sinc methods to the world of computation. It serves as an excellent research sourcebook as well as a textbook which uses analytic functions to derive Sinc methods for the advanced numerical analysis and applied approximation theory classrooms. Problem sections and historical notes are included.

Handbook of Sinc Numerical Methods

Handbook of Sinc Numerical Methods
Title Handbook of Sinc Numerical Methods PDF eBook
Author Frank Stenger
Publisher CRC Press
Total Pages 482
Release 2017-05-31
Genre
ISBN 9781138116177

Download Handbook of Sinc Numerical Methods Book in PDF, Epub and Kindle

Handbook of Sinc Numerical Methods presents an ideal road map for handling general numeric problems. Reflecting the author�s advances with Sinc since 1995, the text most notably provides a detailed exposition of the Sinc separation of variables method for numerically solving the full range of partial differential equations (PDEs) of interest to scientists and engineers. This new theory, which combines Sinc convolution with the boundary integral equation (IE) approach, makes for exponentially faster convergence to solutions of differential equations. The basis for the approach is the Sinc method of approximating almost every type of operation stemming from calculus via easily computed matrices of very low dimension. The CD-ROM of this handbook contains roughly 450 MATLAB� programs corresponding to exponentially convergent numerical algorithms for solving nearly every computational problem of science and engineering. While the book makes Sinc methods accessible to users wanting to bypass the complete theory, it also offers sufficient theoretical details for readers who do want a full working understanding of this exciting area of numerical analysis.

Handbook of Sinc Numerical Methods

Handbook of Sinc Numerical Methods
Title Handbook of Sinc Numerical Methods PDF eBook
Author Frank Stenger
Publisher CRC Press
Total Pages 482
Release 2016-04-19
Genre Mathematics
ISBN 1439821593

Download Handbook of Sinc Numerical Methods Book in PDF, Epub and Kindle

Handbook of Sinc Numerical Methods presents an ideal road map for handling general numeric problems. Reflecting the author's advances with Sinc since 1995, the text most notably provides a detailed exposition of the Sinc separation of variables method for numerically solving the full range of partial differential equations (PDEs) of interest to sci

Sinc Methods for Quadrature and Differential Equations

Sinc Methods for Quadrature and Differential Equations
Title Sinc Methods for Quadrature and Differential Equations PDF eBook
Author John Lund
Publisher SIAM
Total Pages 307
Release 1992-01-01
Genre Mathematics
ISBN 9781611971637

Download Sinc Methods for Quadrature and Differential Equations Book in PDF, Epub and Kindle

Here is an elementary development of the Sinc-Galerkin method with the focal point being ordinary and partial differential equations. This is the first book to explain this powerful computational method for treating differential equations. These methods are an alternative to finite difference and finite element schemes, and are especially adaptable to problems with singular solutions. The text is written to facilitate easy implementation of the theory into operating numerical code. The authors' use of differential equations as a backdrop for the presentation of the material allows them to present a number of the applications of the sinc method. Many of these applications are useful in numerical processes of interest quite independent of differential equations. Specifically, numerical interpolation and quadrature, while fundamental to the Galerkin development, are useful in their own right. The intimate connection between collocation and Galerkin for the sinc basis is exposed via sinc-interpolation. The quadrature rules define a class of numerical integration methods that complement better known techniques, which in the case of singular integrands, often require modification. The sinc methodology of the text is illustrated on such applications as initial data recovery, heat diffusion, advective-diffusive transport, and Burgers' equation, to illustrate the numerical implementation of the theory discussed. Engineers may find sinc methods a very competitive approach to the more common boundary element or finite element methods. Further, workers in the signal processing community may find this particular approach a refreshingly different view of the use of sinc functions. Sinc approximation is a relatively new numerical technique. This book provides a much needed elementary level explanation. It has been used for graduate numerical classes at Montana State University and Texas Tech University.

Numerical Analysis of Wavelet Methods

Numerical Analysis of Wavelet Methods
Title Numerical Analysis of Wavelet Methods PDF eBook
Author A. Cohen
Publisher Elsevier
Total Pages 357
Release 2003-04-29
Genre Mathematics
ISBN 0080537855

Download Numerical Analysis of Wavelet Methods Book in PDF, Epub and Kindle

Since their introduction in the 1980's, wavelets have become a powerful tool in mathematical analysis, with applications such as image compression, statistical estimation and numerical simulation of partial differential equations. One of their main attractive features is the ability to accurately represent fairly general functions with a small number of adaptively chosen wavelet coefficients, as well as to characterize the smoothness of such functions from the numerical behaviour of these coefficients. The theoretical pillar that underlies such properties involves approximation theory and function spaces, and plays a pivotal role in the analysis of wavelet-based numerical methods. This book offers a self-contained treatment of wavelets, which includes this theoretical pillar and it applications to the numerical treatment of partial differential equations. Its key features are: 1. Self-contained introduction to wavelet bases and related numerical algorithms, from the simplest examples to the most numerically useful general constructions. 2. Full treatment of the theoretical foundations that are crucial for the analysis of wavelets and other related multiscale methods : function spaces, linear and nonlinear approximation, interpolation theory. 3. Applications of these concepts to the numerical treatment of partial differential equations : multilevel preconditioning, sparse approximations of differential and integral operators, adaptive discretization strategies.

Numerical Analysis of Spectral Methods

Numerical Analysis of Spectral Methods
Title Numerical Analysis of Spectral Methods PDF eBook
Author David Gottlieb
Publisher SIAM
Total Pages 167
Release 1977-01-01
Genre Technology & Engineering
ISBN 0898710235

Download Numerical Analysis of Spectral Methods Book in PDF, Epub and Kindle

A unified discussion of the formulation and analysis of special methods of mixed initial boundary-value problems. The focus is on the development of a new mathematical theory that explains why and how well spectral methods work. Included are interesting extensions of the classical numerical analysis.