Mastering Probabilistic Graphical Models Using Python

Mastering Probabilistic Graphical Models Using Python
Title Mastering Probabilistic Graphical Models Using Python PDF eBook
Author Ankur Ankan
Publisher Packt Publishing Ltd
Total Pages 284
Release 2015-08-03
Genre Computers
ISBN 1784395218

Download Mastering Probabilistic Graphical Models Using Python Book in PDF, Epub and Kindle

Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python About This Book Gain in-depth knowledge of Probabilistic Graphical Models Model time-series problems using Dynamic Bayesian Networks A practical guide to help you apply PGMs to real-world problems Who This Book Is For If you are a researcher or a machine learning enthusiast, or are working in the data science field and have a basic idea of Bayesian Learning or Probabilistic Graphical Models, this book will help you to understand the details of Graphical Models and use it in your data science problems. This book will also help you select the appropriate model as well as the appropriate algorithm for your problem. What You Will Learn Get to know the basics of Probability theory and Graph Theory Work with Markov Networks Implement Bayesian Networks Exact Inference Techniques in Graphical Models such as the Variable Elimination Algorithm Understand approximate Inference Techniques in Graphical Models such as Message Passing Algorithms Sample algorithms in Graphical Models Grasp details of Naive Bayes with real-world examples Deploy PGMs using various libraries in Python Gain working details of Hidden Markov Models with real-world examples In Detail Probabilistic Graphical Models is a technique in machine learning that uses the concepts of graph theory to compactly represent and optimally predict values in our data problems. In real world problems, it's often difficult to select the appropriate graphical model as well as the appropriate inference algorithm, which can make a huge difference in computation time and accuracy. Thus, it is crucial to know the working details of these algorithms. This book starts with the basics of probability theory and graph theory, then goes on to discuss various models and inference algorithms. All the different types of models are discussed along with code examples to create and modify them, and also to run different inference algorithms on them. There is a complete chapter devoted to the most widely used networks Naive Bayes Model and Hidden Markov Models (HMMs). These models have been thoroughly discussed using real-world examples. Style and approach An easy-to-follow guide to help you understand Probabilistic Graphical Models using simple examples and numerous code examples, with an emphasis on more widely used models.

Building Probabilistic Graphical Models with Python

Building Probabilistic Graphical Models with Python
Title Building Probabilistic Graphical Models with Python PDF eBook
Author Kiran K. Karkera
Publisher CreateSpace
Total Pages 172
Release 2015-05-18
Genre
ISBN 9781512220056

Download Building Probabilistic Graphical Models with Python Book in PDF, Epub and Kindle

With the increasing prominence in machine learning and data science applications, probabilistic graphical models are a new tool that machine learning users can use to discover and analyze structures in complex problems. The variety of tools and algorithms under the PGM framework extend to many domains such as natural language processing, speech processing, image processing, and disease diagnosis. You've probably heard of graphical models before, and you're keen to try out new landscapes in the machine learning area. This book gives you enough background information to get started on graphical models, while keeping the math to a minimum. Approach This is a short, practical guide that allows data scientists to understand the concepts of Graphical models and enables them to try them out using small Python code snippets, without being too mathematically complicated. Who this book is for If you are a data scientist who knows about machine learning and want to enhance your knowledge of graphical models, such as Bayes network, in order to use them to solve real-world problems using Python libraries, this book is for you.This book is intended for those who have some Python and machine learning experience, or are exploring the machine learning field.

Building Probabilistic Graphical Models with Python

Building Probabilistic Graphical Models with Python
Title Building Probabilistic Graphical Models with Python PDF eBook
Author Kiran R. Karkera
Publisher
Total Pages 172
Release 2014
Genre Graphical modeling (Statistics)
ISBN 9781306902878

Download Building Probabilistic Graphical Models with Python Book in PDF, Epub and Kindle

"This is a short, practical guide that allows data scientists to understand the concepts of Graphical models and enables them to try them out using small Python code snippets, without being too mathematically complicated. If you are a data scientist who knows about machine learning and want to enhance your knowledge of graphical models, such as Bayes network, in order to use them to solve real-world problems using Python libraries, this book is for you.This book is intended for those who have some Python and machine learning experience, or are exploring the machine learning field."

Hands-On Markov Models with Python

Hands-On Markov Models with Python
Title Hands-On Markov Models with Python PDF eBook
Author Ankur Ankan
Publisher Packt Publishing Ltd
Total Pages 172
Release 2018-09-27
Genre Computers
ISBN 1788629337

Download Hands-On Markov Models with Python Book in PDF, Epub and Kindle

Unleash the power of unsupervised machine learning in Hidden Markov Models using TensorFlow, pgmpy, and hmmlearn Key FeaturesBuild a variety of Hidden Markov Models (HMM)Create and apply models to any sequence of data to analyze, predict, and extract valuable insightsUse natural language processing (NLP) techniques and 2D-HMM model for image segmentationBook Description Hidden Markov Model (HMM) is a statistical model based on the Markov chain concept. Hands-On Markov Models with Python helps you get to grips with HMMs and different inference algorithms by working on real-world problems. The hands-on examples explored in the book help you simplify the process flow in machine learning by using Markov model concepts, thereby making it accessible to everyone. Once you’ve covered the basic concepts of Markov chains, you’ll get insights into Markov processes, models, and types with the help of practical examples. After grasping these fundamentals, you’ll move on to learning about the different algorithms used in inferences and applying them in state and parameter inference. In addition to this, you’ll explore the Bayesian approach of inference and learn how to apply it in HMMs. In further chapters, you’ll discover how to use HMMs in time series analysis and natural language processing (NLP) using Python. You’ll also learn to apply HMM to image processing using 2D-HMM to segment images. Finally, you’ll understand how to apply HMM for reinforcement learning (RL) with the help of Q-Learning, and use this technique for single-stock and multi-stock algorithmic trading. By the end of this book, you will have grasped how to build your own Markov and hidden Markov models on complex datasets in order to apply them to projects. What you will learnExplore a balance of both theoretical and practical aspects of HMMImplement HMMs using different datasets in Python using different packagesUnderstand multiple inference algorithms and how to select the right algorithm to resolve your problemsDevelop a Bayesian approach to inference in HMMsImplement HMMs in finance, natural language processing (NLP), and image processingDetermine the most likely sequence of hidden states in an HMM using the Viterbi algorithmWho this book is for Hands-On Markov Models with Python is for you if you are a data analyst, data scientist, or machine learning developer and want to enhance your machine learning knowledge and skills. This book will also help you build your own hidden Markov models by applying them to any sequence of data. Basic knowledge of machine learning and the Python programming language is expected to get the most out of the book

Building Probabilistic Graphical Models with Python

Building Probabilistic Graphical Models with Python
Title Building Probabilistic Graphical Models with Python PDF eBook
Author Kiran R. Karkera
Publisher
Total Pages 0
Release 2014-06-14
Genre Computer graphics
ISBN 9781783289004

Download Building Probabilistic Graphical Models with Python Book in PDF, Epub and Kindle

This is a short, practical guide that allows data scientists to understand the concepts of Graphical models and enables them to try them out using small Python code snippets, without being too mathematically complicated. If you are a data scientist who knows about machine learning and want to enhance your knowledge of graphical models, such as Bayes network, in order to use them to solve real-world problems using Python libraries, this book is for you. This book is intended for those who have some Python and machine learning experience, or are exploring the machine learning field.

Graph Data Modeling in Python

Graph Data Modeling in Python
Title Graph Data Modeling in Python PDF eBook
Author Gary Hutson
Publisher
Total Pages 0
Release 2023-06-30
Genre
ISBN 9781804618035

Download Graph Data Modeling in Python Book in PDF, Epub and Kindle

Learn how to transform, store, evolve, refactor, model, and create graph projections using the Python programming language Purchase of the print or Kindle book includes a free PDF eBook Key Features: Transform relational data models into graph data model while learning key applications along the way Discover common challenges in graph modeling and analysis, and learn how to overcome them Practice real-world use cases of community detection, knowledge graph, and recommendation network Book Description: Graphs have become increasingly integral to powering the products and services we use in our daily lives, driving social media, online shopping recommendations, and even fraud detection. With this book, you'll see how a good graph data model can help enhance efficiency and unlock hidden insights through complex network analysis. Graph Data Modeling in Python will guide you through designing, implementing, and harnessing a variety of graph data models using the popular open source Python libraries NetworkX and igraph. Following practical use cases and examples, you'll find out how to design optimal graph models capable of supporting a wide range of queries and features. Moreover, you'll seamlessly transition from traditional relational databases and tabular data to the dynamic world of graph data structures that allow powerful, path-based analyses. As well as learning how to manage a persistent graph database using Neo4j, you'll also get to grips with adapting your network model to evolving data requirements. By the end of this book, you'll be able to transform tabular data into powerful graph data models. In essence, you'll build your knowledge from beginner to advanced-level practitioner in no time. What You Will Learn: Design graph data models and master schema design best practices Work with the NetworkX and igraph frameworks in Python Store, query, ingest, and refactor graph data Store your graphs in memory with Neo4j Build and work with projections and put them into practice Refactor schemas and learn tactics for managing an evolved graph data model Who this book is for: If you are a data analyst or database developer interested in learning graph databases and how to curate and extract data from them, this is the book for you. It is also beneficial for data scientists and Python developers looking to get started with graph data modeling. Although knowledge of Python is assumed, no prior experience in graph data modeling theory and techniques is required.

Bayesian Methods for Hackers

Bayesian Methods for Hackers
Title Bayesian Methods for Hackers PDF eBook
Author Cameron Davidson-Pilon
Publisher Addison-Wesley Professional
Total Pages 551
Release 2015-09-30
Genre Computers
ISBN 0133902927

Download Bayesian Methods for Hackers Book in PDF, Epub and Kindle

Master Bayesian Inference through Practical Examples and Computation–Without Advanced Mathematical Analysis Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You’ll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you’ve mastered these techniques, you’ll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes • Learning the Bayesian “state of mind” and its practical implications • Understanding how computers perform Bayesian inference • Using the PyMC Python library to program Bayesian analyses • Building and debugging models with PyMC • Testing your model’s “goodness of fit” • Opening the “black box” of the Markov Chain Monte Carlo algorithm to see how and why it works • Leveraging the power of the “Law of Large Numbers” • Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning • Using loss functions to measure an estimate’s weaknesses based on your goals and desired outcomes • Selecting appropriate priors and understanding how their influence changes with dataset size • Overcoming the “exploration versus exploitation” dilemma: deciding when “pretty good” is good enough • Using Bayesian inference to improve A/B testing • Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.