Introduction to Many-Body Physics

Introduction to Many-Body Physics
Title Introduction to Many-Body Physics PDF eBook
Author Piers Coleman
Publisher Cambridge University Press
Total Pages 815
Release 2015-11-26
Genre Science
ISBN 1316432025

Download Introduction to Many-Body Physics Book in PDF, Epub and Kindle

A modern, graduate-level introduction to many-body physics in condensed matter, this textbook explains the tools and concepts needed for a research-level understanding of the correlated behavior of quantum fluids. Starting with an operator-based introduction to the quantum field theory of many-body physics, this textbook presents the Feynman diagram approach, Green's functions and finite-temperature many-body physics before developing the path integral approach to interacting systems. Special chapters are devoted to the concepts of Fermi liquid theory, broken symmetry, conduction in disordered systems, superconductivity and the physics of local-moment metals. A strong emphasis on concepts and numerous exercises make this an invaluable course book for graduate students in condensed matter physics. It will also interest students in nuclear, atomic and particle physics.

Many-Body Quantum Theory in Condensed Matter Physics

Many-Body Quantum Theory in Condensed Matter Physics
Title Many-Body Quantum Theory in Condensed Matter Physics PDF eBook
Author Henrik Bruus
Publisher Oxford University Press
Total Pages 458
Release 2004-09-02
Genre Science
ISBN 0198566336

Download Many-Body Quantum Theory in Condensed Matter Physics Book in PDF, Epub and Kindle

The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.

Quantum Field Theory of Many-Body Systems

Quantum Field Theory of Many-Body Systems
Title Quantum Field Theory of Many-Body Systems PDF eBook
Author Xiao-Gang Wen
Publisher OUP Oxford
Total Pages 520
Release 2004-06-04
Genre Science
ISBN 0191523968

Download Quantum Field Theory of Many-Body Systems Book in PDF, Epub and Kindle

For most of the last century, condensed matter physics has been dominated by band theory and Landau's symmetry breaking theory. In the last twenty years, however, there has been the emergence of a new paradigm associated with fractionalisation, topological order, emergent gauge bosons and fermions, and string condensation. These new physical concepts are so fundamental that they may even influence our understanding of the origin of light and fermions in the universe. This book is a pedagogical and systematic introduction to the new concepts and quantum field theoretical methods (which have fuelled the rapid developments) in condensed matter physics. It discusses many basic notions in theoretical physics which underlie physical phenomena in nature. Topics covered are dissipative quantum systems, boson condensation, symmetry breaking and gapless excitations, phase transitions, Fermi liquids, spin density wave states, Fermi and fractional statistics, quantum Hall effects, topological and quantum order, spin liquids, and string condensation. Methods covered are the path integral, Green's functions, mean-field theory, effective theory, renormalization group, bosonization in one- and higher dimensions, non-linear sigma-model, quantum gauge theory, dualities, slave-boson theory, and exactly soluble models beyond one-dimension. This book is aimed at teaching graduate students and bringing them to the frontiers of research in condensed matter physics.

Many-Body Theory of Solids

Many-Body Theory of Solids
Title Many-Body Theory of Solids PDF eBook
Author John C. Inkson
Publisher Springer Science & Business Media
Total Pages 333
Release 2012-12-06
Genre Science
ISBN 1475702264

Download Many-Body Theory of Solids Book in PDF, Epub and Kindle

here exists a gap in the present literature on quantum mechanics T and its application to solids. It has been difficult to find an intro ductory textbook which could take a student from the elementary quan tum mechanical ideas of the single-particle Schrodinger equations, through the formalism and new physical concepts of many-body theory, to the level where the student would be equipped to read the scientific literature and specialized books on specific topics. The present book, which I believe fills this gap, grew out of two courses which I have given for a number of years at the University of Cambridge: "Advanced Quan tum Mechanics," covering the quantization of fields, representations, and creation and annihilation operators, and "Many Body Theory," on the application of quantum field theory to solids. The first course is a final-year undergraduate physics course while the second is a joint first and fourth-year undergraduate math year postgraduate physics course ematics course. In an American context this would closely correspond to a graduate course at the masters level. In writing this book I have tried to stress the physical aspects of the mathematics preferring where possible to introduce a technique by using a simple illustrative example rather than develop a purely formal treat ment. In order to do this I have assumed a certain familiarity with solid state physics on the level of a normal undergraduate course, but the book should also be useful to those without such a background.

Nonequilibrium Many-Body Theory of Quantum Systems

Nonequilibrium Many-Body Theory of Quantum Systems
Title Nonequilibrium Many-Body Theory of Quantum Systems PDF eBook
Author Gianluca Stefanucci
Publisher Cambridge University Press
Total Pages
Release 2013-03-07
Genre Science
ISBN 1107354579

Download Nonequilibrium Many-Body Theory of Quantum Systems Book in PDF, Epub and Kindle

The Green's function method is one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has proved invaluable in many research fields. This book provides a unique, self-contained introduction to nonequilibrium many-body theory. Starting with basic quantum mechanics, the authors introduce the equilibrium and nonequilibrium Green's function formalisms within a unified framework called the contour formalism. The physical content of the contour Green's functions and the diagrammatic expansions are explained with a focus on the time-dependent aspect. Every result is derived step-by-step, critically discussed and then applied to different physical systems, ranging from molecules and nanostructures to metals and insulators. With an abundance of illustrative examples, this accessible book is ideal for graduate students and researchers who are interested in excited state properties of matter and nonequilibrium physics.

Many-Body Theory of Condensed Matter Systems

Many-Body Theory of Condensed Matter Systems
Title Many-Body Theory of Condensed Matter Systems PDF eBook
Author Michael G. Cottam
Publisher Cambridge University Press
Total Pages 289
Release 2020-07-30
Genre Science
ISBN 1108488242

Download Many-Body Theory of Condensed Matter Systems Book in PDF, Epub and Kindle

For non-specialist students and researchers, this is a broad and concise introduction to the many-body theory of condensed-matter systems.

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory
Title Many-Body Problems and Quantum Field Theory PDF eBook
Author Philippe Andre Martin
Publisher Springer Science & Business Media
Total Pages 442
Release 2013-04-17
Genre Science
ISBN 3662084902

Download Many-Body Problems and Quantum Field Theory Book in PDF, Epub and Kindle

Emphasis is placed on analogies between the various systems rather than on advanced or specialized aspects, with the purpose of illustrating common ideas within different domains of physics. Starting from a basic knowledge of quantum mechanics and classical electromagnetism, the exposition is self-contained and explicitly details all steps of the derivations. The new edition features a substantially new treatment of nucleon pairing.