Thermomechanical Modeling and Experimental Characterization of Sheet Molding Compound Composites

Thermomechanical Modeling and Experimental Characterization of Sheet Molding Compound Composites
Title Thermomechanical Modeling and Experimental Characterization of Sheet Molding Compound Composites PDF eBook
Author Lang, Juliane
Publisher KIT Scientific Publishing
Total Pages 250
Release 2023-06-28
Genre
ISBN 3731512327

Download Thermomechanical Modeling and Experimental Characterization of Sheet Molding Compound Composites Book in PDF, Epub and Kindle

The aim of this work is to model and experimentally characterize the anisotropic material behavior of SMC composites on the macroscale with consideration of the microstructure. Temperature-dependent thermoelastic behavior and failure behavior are modeled and the corresponding material properties are determined experimentally. Additionally, experimental biaxial damage investigations are performed. A parameter identification merges modeling and experiments and validates the models.

Thermomechanical Mean-Field Modeling and Experimental Characterization of Long Fiber-Reinforced Sheet Molding Compound Composites

Thermomechanical Mean-Field Modeling and Experimental Characterization of Long Fiber-Reinforced Sheet Molding Compound Composites
Title Thermomechanical Mean-Field Modeling and Experimental Characterization of Long Fiber-Reinforced Sheet Molding Compound Composites PDF eBook
Author Kehrer, Maria Loredana
Publisher KIT Scientific Publishing
Total Pages 204
Release 2019-06-13
Genre Technology & Engineering
ISBN 3731509245

Download Thermomechanical Mean-Field Modeling and Experimental Characterization of Long Fiber-Reinforced Sheet Molding Compound Composites Book in PDF, Epub and Kindle

A discontinuous fiber-reinforced thermoset material produced by the Sheet Molding Compound process is investigated. Due to the process-related fiber orientation distribution, a composite with an anisotropic microstructure is created which crucially affects the mechanical properties. The central objectives are the modeling of the thermoelastic behavior of the composite accounting for the underlying microstructure, and the experimental characterization of the pure resin and the composite material.

Thermomechanical Mean-Field Modeling and Experimental Characterization of Long Fiber-Reinforced Sheet Molding Compound Composites

Thermomechanical Mean-Field Modeling and Experimental Characterization of Long Fiber-Reinforced Sheet Molding Compound Composites
Title Thermomechanical Mean-Field Modeling and Experimental Characterization of Long Fiber-Reinforced Sheet Molding Compound Composites PDF eBook
Author Maria Loredana Kehrer
Publisher Saint Philip Street Press
Total Pages 0
Release 2020-10-09
Genre Technology & Engineering
ISBN 9781013281945

Download Thermomechanical Mean-Field Modeling and Experimental Characterization of Long Fiber-Reinforced Sheet Molding Compound Composites Book in PDF, Epub and Kindle

A discontinuous fiber-reinforced thermoset material produced by the Sheet Molding Compound process is investigated. Due to the process-related fiber orientation distribution, a composite with an anisotropic microstructure is created which crucially affects the mechanical properties. The central objectives are the modeling of the thermoelastic behavior of the composite accounting for the underlying microstructure, and the experimental characterization of the pure resin and the composite material. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.

Fiber Orientation Tensors and Mean Field Homogenization: Application to Sheet Molding Compound

Fiber Orientation Tensors and Mean Field Homogenization: Application to Sheet Molding Compound
Title Fiber Orientation Tensors and Mean Field Homogenization: Application to Sheet Molding Compound PDF eBook
Author Bauer, Julian Karl
Publisher KIT Scientific Publishing
Total Pages 252
Release 2023-02-27
Genre Technology & Engineering
ISBN 3731512629

Download Fiber Orientation Tensors and Mean Field Homogenization: Application to Sheet Molding Compound Book in PDF, Epub and Kindle

Effective mechanical properties of fiber-reinforced composites strongly depend on the microstructure, including the fibers' orientation. Studying this dependency, we identify the variety of fiber orientation tensors up to fourth-order using irreducible tensors and material symmetry. The case of planar fiber orientation tensors, relevant for sheet molding compound, is presented completely. Consequences for the reconstruction of fiber distributions and mean field homogenization are presented.

Deep material networks for efficient scale-bridging in thermomechanical simulations of solids

Deep material networks for efficient scale-bridging in thermomechanical simulations of solids
Title Deep material networks for efficient scale-bridging in thermomechanical simulations of solids PDF eBook
Author Gajek, Sebastian
Publisher KIT Scientific Publishing
Total Pages 326
Release 2023-08-25
Genre
ISBN 3731512785

Download Deep material networks for efficient scale-bridging in thermomechanical simulations of solids Book in PDF, Epub and Kindle

We investigate deep material networks (DMN). We lay the mathematical foundation of DMNs and present a novel DMN formulation, which is characterized by a reduced number of degrees of freedom. We present a efficient solution technique for nonlinear DMNs to accelerate complex two-scale simulations with minimal computational effort. A new interpolation technique is presented enabling the consideration of fluctuating microstructure characteristics in macroscopic simulations.

Microstructure modeling and crystal plasticity parameter identification for predicting the cyclic mechanical behavior of polycrystalline metals

Microstructure modeling and crystal plasticity parameter identification for predicting the cyclic mechanical behavior of polycrystalline metals
Title Microstructure modeling and crystal plasticity parameter identification for predicting the cyclic mechanical behavior of polycrystalline metals PDF eBook
Author Kuhn, Jannick
Publisher KIT Scientific Publishing
Total Pages 224
Release 2023-04-04
Genre Technology & Engineering
ISBN 3731512726

Download Microstructure modeling and crystal plasticity parameter identification for predicting the cyclic mechanical behavior of polycrystalline metals Book in PDF, Epub and Kindle

Computational homogenization permits to capture the influence of the microstructure on the cyclic mechanical behavior of polycrystalline metals. In this work we investigate methods to compute Laguerre tessellations as computational cells of polycrystalline microstructures, propose a new method to assign crystallographic orientations to the Laguerre cells and use Bayesian optimization to find suitable parameters for the underlying micromechanical model from macroscopic experiments.

A computational multi-scale approach for brittle materials

A computational multi-scale approach for brittle materials
Title A computational multi-scale approach for brittle materials PDF eBook
Author Ernesti, Felix
Publisher KIT Scientific Publishing
Total Pages 264
Release 2023-04-17
Genre Technology & Engineering
ISBN 3731512858

Download A computational multi-scale approach for brittle materials Book in PDF, Epub and Kindle

Materials of industrial interest often show a complex microstructure which directly influences their macroscopic material behavior. For simulations on the component scale, multi-scale methods may exploit this microstructural information. This work is devoted to a multi-scale approach for brittle materials. Based on a homogenization result for free discontinuity problems, we present FFT-based methods to compute the effective crack energy of heterogeneous materials with complex microstructures.