Quantum Strangeness

Quantum Strangeness
Title Quantum Strangeness PDF eBook
Author George S. Greenstein
Publisher MIT Press
Total Pages 157
Release 2023-09-19
Genre Science
ISBN 0262549301

Download Quantum Strangeness Book in PDF, Epub and Kindle

A physicist's efforts to understand the enigma that is quantum mechanics. Quantum mechanics is one of the glories of our age. The theory lies at the heart of modern society. Quantum mechanics is one of our most valuable forecasters—a “great predictor.” It has immeasurably altered our conception of the natural world. Its philosophical implications are earthshaking. But quantum mechanics steadfastly refuses to speak of many things; it deals in probabilities rather than giving explicit descriptions. It never explains. Einstein, one of its creators, considered the theory incomplete. Even now, many years after the creation of quantum mechanics, physicists continue to argue about it. Astrophysicist George Greenstein has been both fascinated and confused by quantum mechanics for his entire career. In this book, he describes, engagingly and accessibly, his efforts to understand the enigma that is quantum mechanics. The fastest route to the insight into the ultimate nature of reality revealed by quantum mechanics, Greenstein writes, is through Bell's Theorem, which concerns reality at the quantum level; and Bell's 1964 discovery drives Greenstein's quest. Greenstein recounts a scientific odyssey that begins with Einstein, continues with Bell, and culminates with today's push to develop an industry of quantum machines. Along the way, he discusses spin, entanglement, experimental metaphysics, and quantum teleportation, often with easy-to-grasp analogies. We have known for decades that the world of the quantum was strange, but, Greenstein says, not until John Bell came along did we know just how strange.

Quantum Reality

Quantum Reality
Title Quantum Reality PDF eBook
Author George Greenstein
Publisher
Total Pages 160
Release 2019
Genre Physics
ISBN 9780262353298

Download Quantum Reality Book in PDF, Epub and Kindle

A physicist's efforts to understand the enigma that is quantum mechanics. Quantum mechanics is one of the glories of our age. The theory lies at the heart of modern society. Quantum mechanics is one of our most valuable forecasters--a "great predictor." It has immeasurably altered our conception of the natural world. Its philosophical implications are earthshaking. But quantum mechanics steadfastly refuses to speak of many things; it deals in probabilities rather than giving explicit descriptions. It never explains. Einstein, one of its creators, considered the theory incomplete. Even now, many years after the creation of quantum mechanics, physicists continue to argue about it. Astrophysicist George Greenstein has been both fascinated and confused by quantum mechanics for his entire career. In this book, he describes, engagingly and accessibly, his efforts to understand the enigma that is quantum mechanics. The fastest route to the insight into the ultimate nature of reality revealed by quantum mechanics, Greenstein writes, is through Bell's Theorem, which concerns reality at the quantum level; and Bell's 1964 discovery drives Greenstein's quest. Greenstein recounts a scientific odyssey that begins with Einstein, continues with Bell, and culminates with today's push to develop an industry of quantum machines. Along the way, he discusses spin, entanglement, experimental metaphysics, and quantum teleportation, often with easy-to-grasp analogies. We have known for decades that the world of the quantum was strange, but, Greenstein says, not until John Bell came along did we know just how strange.

Where Does The Weirdness Go?

Where Does The Weirdness Go?
Title Where Does The Weirdness Go? PDF eBook
Author David Lindley
Publisher
Total Pages 270
Release 2008-08-06
Genre Science
ISBN 0786725877

Download Where Does The Weirdness Go? Book in PDF, Epub and Kindle

Few revolutions in science have been more far-reaching--but less understood--than the quantum revolution in physics. Everyday experience cannot prepare us for the sub-atomic world, where quantum effects become all-important. Here, particles can look like waves, and vice versa; electrons seem to lose their identity and instead take on a shifting, unpredictable appearance that depends on how they are being observed; and a single photon may sometimes behave as if it could be in two places at once. In the world of quantum mechanics, uncertainty and ambiguity become not just unavoidable, but essential ingredients of science--a development so disturbing that to Einstein "it was as if God were playing dice with the universe." And there is no one better able to explain the quantum revolution as it approaches the century mark than David Lindley. He brings the quantum revolution full circle, showing how the familiar and trustworthy reality of the world around us is actually a consequence of the ineffable uncertainty of the subatomic quantum world--the world we can't see.

Quantum Mechanics

Quantum Mechanics
Title Quantum Mechanics PDF eBook
Author Leonard Susskind
Publisher Basic Books (AZ)
Total Pages 386
Release 2014-02-25
Genre Science
ISBN 0465036678

Download Quantum Mechanics Book in PDF, Epub and Kindle

From the bestselling author of The Theoretical Minimum, a DIY introduction to the math and science of quantum physics First he taught you classical mechanics. Now, physicist Leonard Susskind has teamed up with data engineer Art Friedman to present the theory and associated mathematics of the strange world of quantum mechanics. In this follow-up to The Theoretical Minimum, Susskind and Friedman provide a lively introduction to this famously difficult field, which attempts to understand the behavior of sub-atomic objects through mathematical abstractions. Unlike other popularizations that shy away from quantum mechanics’ weirdness, Quantum Mechanics embraces the utter strangeness of quantum logic. The authors offer crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics, and each chapter includes exercises to ensure mastery of each area. Like The Theoretical Minimum, this volume runs parallel to Susskind’s eponymous Stanford University-hosted continuing education course. An approachable yet rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.

QED

QED
Title QED PDF eBook
Author Richard P. Feynman
Publisher Princeton University Press
Total Pages 192
Release 2014-10-26
Genre Science
ISBN 140084746X

Download QED Book in PDF, Epub and Kindle

Celebrated for his brilliantly quirky insights into the physical world, Nobel laureate Richard Feynman also possessed an extraordinary talent for explaining difficult concepts to the general public. Here Feynman provides a classic and definitive introduction to QED (namely, quantum electrodynamics), that part of quantum field theory describing the interactions of light with charged particles. Using everyday language, spatial concepts, visualizations, and his renowned "Feynman diagrams" instead of advanced mathematics, Feynman clearly and humorously communicates both the substance and spirit of QED to the layperson. A. Zee's introduction places Feynman’s book and his seminal contribution to QED in historical context and further highlights Feynman’s uniquely appealing and illuminating style.

Mastering Quantum Mechanics

Mastering Quantum Mechanics
Title Mastering Quantum Mechanics PDF eBook
Author Barton Zwiebach
Publisher MIT Press
Total Pages 1105
Release 2022-04-12
Genre Science
ISBN 0262366894

Download Mastering Quantum Mechanics Book in PDF, Epub and Kindle

A complete overview of quantum mechanics, covering essential concepts and results, theoretical foundations, and applications. This undergraduate textbook offers a comprehensive overview of quantum mechanics, beginning with essential concepts and results, proceeding through the theoretical foundations that provide the field’s conceptual framework, and concluding with the tools and applications students will need for advanced studies and for research. Drawn from lectures created for MIT undergraduates and for the popular MITx online course, “Mastering Quantum Mechanics,” the text presents the material in a modern and approachable manner while still including the traditional topics necessary for a well-rounded understanding of the subject. As the book progresses, the treatment gradually increases in difficulty, matching students’ increasingly sophisticated understanding of the material. • Part 1 covers states and probability amplitudes, the Schrödinger equation, energy eigenstates of particles in potentials, the hydrogen atom, and spin one-half particles • Part 2 covers mathematical tools, the pictures of quantum mechanics and the axioms of quantum mechanics, entanglement and tensor products, angular momentum, and identical particles. • Part 3 introduces tools and techniques that help students master the theoretical concepts with a focus on approximation methods. • 236 exercises and 286 end-of-chapter problems • 248 figures

A Computational Introduction to Quantum Physics

A Computational Introduction to Quantum Physics
Title A Computational Introduction to Quantum Physics PDF eBook
Author Sølve Selstø
Publisher Cambridge University Press
Total Pages 196
Release 2024-04-25
Genre Science
ISBN 1009389602

Download A Computational Introduction to Quantum Physics Book in PDF, Epub and Kindle

This concise textbook introduces an innovative computational approach to quantum mechanics. Over the course of this engaging and informal book, students are encouraged to take an active role in learning key concepts by working through practical exercises. The book equips readers with some basic methodology and a toolbox of scientific computing methods, so they can use code to simulate and directly visualize how quantum particles behave. The important foundational elements of the wave function and the Schrödinger equation are first introduced, then the text gradually builds up to advanced topics including relativistic, open, and non-Hermitian quantum physics. This book assumes familiarity with basic mathematics and numerical methods, and can be used to support a two-semester advanced undergraduate course. Source code and solutions for every book exercise involving numerical implementation are provided in Python and MATLAB®, along with supplementary data. Additional problems are provided online for instructor use with locked solutions.