Number Systems for Deep Neural Network Architectures

Number Systems for Deep Neural Network Architectures
Title Number Systems for Deep Neural Network Architectures PDF eBook
Author Ghada Alsuhli
Publisher Springer Nature
Total Pages 100
Release 2023-09-01
Genre Technology & Engineering
ISBN 3031381335

Download Number Systems for Deep Neural Network Architectures Book in PDF, Epub and Kindle

This book provides readers a comprehensive introduction to alternative number systems for more efficient representations of Deep Neural Network (DNN) data. Various number systems (conventional/unconventional) exploited for DNNs are discussed, including Floating Point (FP), Fixed Point (FXP), Logarithmic Number System (LNS), Residue Number System (RNS), Block Floating Point Number System (BFP), Dynamic Fixed-Point Number System (DFXP) and Posit Number System (PNS). The authors explore the impact of these number systems on the performance and hardware design of DNNs, highlighting the challenges associated with each number system and various solutions that are proposed for addressing them.

Math and Architectures of Deep Learning

Math and Architectures of Deep Learning
Title Math and Architectures of Deep Learning PDF eBook
Author Krishnendu Chaudhury
Publisher Simon and Schuster
Total Pages 550
Release 2024-05-21
Genre Computers
ISBN 1638350809

Download Math and Architectures of Deep Learning Book in PDF, Epub and Kindle

Shine a spotlight into the deep learning “black box”. This comprehensive and detailed guide reveals the mathematical and architectural concepts behind deep learning models, so you can customize, maintain, and explain them more effectively. Inside Math and Architectures of Deep Learning you will find: Math, theory, and programming principles side by side Linear algebra, vector calculus and multivariate statistics for deep learning The structure of neural networks Implementing deep learning architectures with Python and PyTorch Troubleshooting underperforming models Working code samples in downloadable Jupyter notebooks The mathematical paradigms behind deep learning models typically begin as hard-to-read academic papers that leave engineers in the dark about how those models actually function. Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementations in Python and PyTorch. Written by deep learning expert Krishnendu Chaudhury, you’ll peer inside the “black box” to understand how your code is working, and learn to comprehend cutting-edge research you can turn into practical applications. Foreword by Prith Banerjee. About the technology Discover what’s going on inside the black box! To work with deep learning you’ll have to choose the right model, train it, preprocess your data, evaluate performance and accuracy, and deal with uncertainty and variability in the outputs of a deployed solution. This book takes you systematically through the core mathematical concepts you’ll need as a working data scientist: vector calculus, linear algebra, and Bayesian inference, all from a deep learning perspective. About the book Math and Architectures of Deep Learning teaches the math, theory, and programming principles of deep learning models laid out side by side, and then puts them into practice with well-annotated Python code. You’ll progress from algebra, calculus, and statistics all the way to state-of-the-art DL architectures taken from the latest research. What's inside The core design principles of neural networks Implementing deep learning with Python and PyTorch Regularizing and optimizing underperforming models About the reader Readers need to know Python and the basics of algebra and calculus. About the author Krishnendu Chaudhury is co-founder and CTO of the AI startup Drishti Technologies. He previously spent a decade each at Google and Adobe. Table of Contents 1 An overview of machine learning and deep learning 2 Vectors, matrices, and tensors in machine learning 3 Classifiers and vector calculus 4 Linear algebraic tools in machine learning 5 Probability distributions in machine learning 6 Bayesian tools for machine learning 7 Function approximation: How neural networks model the world 8 Training neural networks: Forward propagation and backpropagation 9 Loss, optimization, and regularization 10 Convolutions in neural networks 11 Neural networks for image classification and object detection 12 Manifolds, homeomorphism, and neural networks 13 Fully Bayes model parameter estimation 14 Latent space and generative modeling, autoencoders, and variational autoencoders A Appendix

Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications

Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications
Title Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications PDF eBook
Author José Manuel Ferrández Vicente
Publisher Springer Nature
Total Pages 675
Release 2022-05-24
Genre Medical
ISBN 3031062426

Download Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications Book in PDF, Epub and Kindle

The two volume set LNCS 13258 and 13259 constitutes the proceedings of the International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2022, held in Puerto de la Cruz, Tenerife, Spain in May – June 2022. The total of 121 contributions was carefully reviewed and selected from 203 submissions. The papers are organized in two volumes, with the following topical sub-headings: Part I: Machine Learning in Neuroscience; Neuromotor and Cognitive Disorders; Affective Analysis; Health Applications, Part II: Affective Computing in Ambient Intelligence; Bioinspired Computing Approaches; Machine Learning in Computer Vision and Robot; Deep Learning; Artificial Intelligence Applications.

Efficient Processing of Deep Neural Networks

Efficient Processing of Deep Neural Networks
Title Efficient Processing of Deep Neural Networks PDF eBook
Author Vivienne Sze
Publisher Springer Nature
Total Pages 254
Release 2022-05-31
Genre Technology & Engineering
ISBN 3031017668

Download Efficient Processing of Deep Neural Networks Book in PDF, Epub and Kindle

This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.

Deep Learning: Concepts and Architectures

Deep Learning: Concepts and Architectures
Title Deep Learning: Concepts and Architectures PDF eBook
Author Witold Pedrycz
Publisher Springer Nature
Total Pages 342
Release 2019-10-29
Genre Technology & Engineering
ISBN 3030317560

Download Deep Learning: Concepts and Architectures Book in PDF, Epub and Kindle

This book introduces readers to the fundamental concepts of deep learning and offers practical insights into how this learning paradigm supports automatic mechanisms of structural knowledge representation. It discusses a number of multilayer architectures giving rise to tangible and functionally meaningful pieces of knowledge, and shows how the structural developments have become essential to the successful delivery of competitive practical solutions to real-world problems. The book also demonstrates how the architectural developments, which arise in the setting of deep learning, support detailed learning and refinements to the system design. Featuring detailed descriptions of the current trends in the design and analysis of deep learning topologies, the book offers practical guidelines and presents competitive solutions to various areas of language modeling, graph representation, and forecasting.

Handbook of Mobility Data Mining, Volume 3

Handbook of Mobility Data Mining, Volume 3
Title Handbook of Mobility Data Mining, Volume 3 PDF eBook
Author Haoran Zhang
Publisher Elsevier
Total Pages 244
Release 2023-01-29
Genre Business & Economics
ISBN 0443184232

Download Handbook of Mobility Data Mining, Volume 3 Book in PDF, Epub and Kindle

Handbook of Mobility Data Mining: Volume Three: Mobility Data-Driven Applications introduces the fundamental technologies of mobile big data mining (MDM), advanced AI methods, and upper-level applications, helping readers comprehensively understand MDM with a bottom-up approach. The book explains how to preprocess mobile big data, visualize urban mobility, simulate and predict human travel behavior, and assess urban mobility characteristics and their matching performance as conditions and constraints in transport, emergency management, and sustainability development systems. The book contains crucial information for researchers, engineers, operators, administrators, and policymakers seeking greater understanding of current technologies' infra-knowledge structure and limitations. The book introduces how to design MDM platforms that adapt to the evolving mobility environment—and new types of transportation and users—based on an integrated solution that utilizes sensing and communication capabilities to tackle significant challenges faced by the MDM field. This third volume looks at various cases studies to illustrate and explore the methods introduced in the first two volumes, covering topics such as Intelligent Transportation Management, Smart Emergency Management—detailing cases such as the Fukushima earthquake, Hurricane Katrina, and COVID-19—and Urban Sustainability Development, covering bicycle and railway travel behavior, mobility inequality, and road and light pollution inequality. Introduces MDM applications from six major areas: intelligent transportation management, shared transportation systems, disaster management, pandemic response, low-carbon transportation, and social equality Uses case studies to examine possible solutions that facilitate ethical, secure, and controlled emergency management based on mobile big data Helps develop policy innovations beneficial to citizens, businesses, and society Stems from the editor’s strong network of global transport authorities and transport companies, providing a solid knowledge structure and data foundation as well as geographical and stakeholder coverage

Deep Learning for Cognitive Computing Systems

Deep Learning for Cognitive Computing Systems
Title Deep Learning for Cognitive Computing Systems PDF eBook
Author M.G. Sumithra
Publisher Walter de Gruyter GmbH & Co KG
Total Pages 214
Release 2022-12-31
Genre Computers
ISBN 3110750589

Download Deep Learning for Cognitive Computing Systems Book in PDF, Epub and Kindle

Cognitive computing simulates human thought processes with self-learning algorithms that utilize data mining, pattern recognition, and natural language processing. The integration of deep learning improves the performance of Cognitive computing systems in many applications, helping in utilizing heterogeneous data sets and generating meaningful insights.