Neuromorphic Circuits for Nanoscale Devices

Neuromorphic Circuits for Nanoscale Devices
Title Neuromorphic Circuits for Nanoscale Devices PDF eBook
Author Pinaki Mazumder
Publisher CRC Press
Total Pages 407
Release 2022-09-01
Genre Technology & Engineering
ISBN 1000795799

Download Neuromorphic Circuits for Nanoscale Devices Book in PDF, Epub and Kindle

Nanoscale devices attracted significant research effort from the industry and academia due to their operation principals being based on different physical properties which provide advantages in the design of certain classes of circuits over conventional CMOS transistors. Neuromorphic Circuits for Nanoscale Devices contains recent research papers presented in various international conferences and journals to provide insight into how the operational principles of the nanoscale devices can be utilized for the design of neuromorphic circuits for various applications of non-volatile memory, neural network training/learning, and image processing. The topics discussed in the book include:Nanoscale Crossbar Memory DesignQ-Learning and Value Iteration using Nanoscale DevicesImage Processing and Computer Vision Applications for Nanoscale DevicesNanoscale Devices based Cellular Nonlinear/Neural Networks

Neuromorphic Circuits for Nanoscale Devices

Neuromorphic Circuits for Nanoscale Devices
Title Neuromorphic Circuits for Nanoscale Devices PDF eBook
Author Pinaki Mazumder
Publisher River Publishers Biomedical En
Total Pages 0
Release 2019-03-31
Genre Technology & Engineering
ISBN 9788770220606

Download Neuromorphic Circuits for Nanoscale Devices Book in PDF, Epub and Kindle

Nanoscale devices attracted significant research effort from the industry and academia due to their operation principals being based on different physical properties which provide advantages in the design of certain classes of circuits over conventional CMOS transistors. Neuromorphic Circuits for Nanoscale Devices contains recent research papers presented in various international conferences and journals to provide insight into how the operational principles of the nanoscale devices can be utilized for the design of neuromorphic circuits for various applications of non-volatile memory, neural network training/learning, and image processing. The topics discussed in the book include: Nanoscale Crossbar Memory Design Q-Learning and Value Iteration using Nanoscale Devices Image Processing and Computer Vision Applications for Nanoscale Devices Nanoscale Devices based Cellular Nonlinear/Neural Networks

Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices

Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices
Title Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices PDF eBook
Author Manan Suri
Publisher Springer
Total Pages 210
Release 2017-01-21
Genre Technology & Engineering
ISBN 813223703X

Download Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices Book in PDF, Epub and Kindle

This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field.

Nanoscale Memristor Device and Circuits Design

Nanoscale Memristor Device and Circuits Design
Title Nanoscale Memristor Device and Circuits Design PDF eBook
Author Balwinder Raj
Publisher Elsevier
Total Pages 254
Release 2023-11-20
Genre Technology & Engineering
ISBN 0323998119

Download Nanoscale Memristor Device and Circuits Design Book in PDF, Epub and Kindle

Nanoscale Memristor Device and Circuits Design provides theoretical frameworks, including (i) the background of memristors, (ii) physics of memristor and their modeling, (iii) menristive device applications, and (iv) circuit design for security and authentication. The book focuses on a broad aspect of realization of these applications as low cost and reliable devices. This is an important reference that will help materials scientists and engineers understand the production and applications of nanoscale memrister devices. A memristor is a two-terminal memory nanoscale device that stores information in terms of high/low resistance. It can retain information even when the power source is removed, i.e., "non-volatile." In contrast to MOS Transistors (MOST), which are the building blocks of all modern mobile and computing devices, memristors are relatively immune to radiation, as well as parasitic effects, such as capacitance, and can be much more reliable. This is extremely attractive for critical safety applications, such as nuclear and aerospace, where radiation can cause failure in MOST-based systems. Outlines the major principles of circuit design for nanoelectronic applications Explores major applications, including memristor-based memories, sensors, solar cells, or memristor-based hardware and software security applications Assesses the major challenges to manufacturing nanoscale memristor devices at an industrial scale

Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design

Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design
Title Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design PDF eBook
Author Nan Zheng
Publisher John Wiley & Sons
Total Pages 389
Release 2019-10-18
Genre Computers
ISBN 1119507405

Download Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design Book in PDF, Epub and Kindle

Explains current co-design and co-optimization methodologies for building hardware neural networks and algorithms for machine learning applications This book focuses on how to build energy-efficient hardware for neural networks with learning capabilities—and provides co-design and co-optimization methodologies for building hardware neural networks that can learn. Presenting a complete picture from high-level algorithm to low-level implementation details, Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design also covers many fundamentals and essentials in neural networks (e.g., deep learning), as well as hardware implementation of neural networks. The book begins with an overview of neural networks. It then discusses algorithms for utilizing and training rate-based artificial neural networks. Next comes an introduction to various options for executing neural networks, ranging from general-purpose processors to specialized hardware, from digital accelerator to analog accelerator. A design example on building energy-efficient accelerator for adaptive dynamic programming with neural networks is also presented. An examination of fundamental concepts and popular learning algorithms for spiking neural networks follows that, along with a look at the hardware for spiking neural networks. Then comes a chapter offering readers three design examples (two of which are based on conventional CMOS, and one on emerging nanotechnology) to implement the learning algorithm found in the previous chapter. The book concludes with an outlook on the future of neural network hardware. Includes cross-layer survey of hardware accelerators for neuromorphic algorithms Covers the co-design of architecture and algorithms with emerging devices for much-improved computing efficiency Focuses on the co-design of algorithms and hardware, which is especially critical for using emerging devices, such as traditional memristors or diffusive memristors, for neuromorphic computing Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design is an ideal resource for researchers, scientists, software engineers, and hardware engineers dealing with the ever-increasing requirement on power consumption and response time. It is also excellent for teaching and training undergraduate and graduate students about the latest generation neural networks with powerful learning capabilities.

Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications

Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications
Title Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications PDF eBook
Author Christos Volos
Publisher Academic Press
Total Pages 570
Release 2021-06-17
Genre Technology & Engineering
ISBN 0128232021

Download Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications Book in PDF, Epub and Kindle

Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications illustrates recent advances in the field of mem-elements (memristor, memcapacitor, meminductor) and their applications in nonlinear dynamical systems, computer science, analog and digital systems, and in neuromorphic circuits and artificial intelligence. The book is mainly devoted to recent results, critical aspects and perspectives of ongoing research on relevant topics, all involving networks of mem-elements devices in diverse applications. Sections contribute to the discussion of memristive materials and transport mechanisms, presenting various types of physical structures that can be fabricated to realize mem-elements in integrated circuits and device modeling. As the last decade has seen an increasing interest in recent advances in mem-elements and their applications in neuromorphic circuits and artificial intelligence, this book will attract researchers in various fields. Covers a broad range of interdisciplinary topics between mathematics, circuits, realizations, and practical applications related to nonlinear dynamical systems, nanotechnology, analog and digital systems, computer science and artificial intelligence Presents recent advances in the field of mem-elements (memristor, memcapacitor, meminductor) Includes interesting applications of mem-elements in nonlinear dynamical systems, analog and digital systems, neuromorphic circuits, computer science and artificial intelligence

Circuits at the Nanoscale

Circuits at the Nanoscale
Title Circuits at the Nanoscale PDF eBook
Author Krzysztof Iniewski
Publisher CRC Press
Total Pages 602
Release 2018-10-08
Genre Technology & Engineering
ISBN 1420070630

Download Circuits at the Nanoscale Book in PDF, Epub and Kindle

Circuits for Emerging Technologies Beyond CMOS New exciting opportunities are abounding in the field of body area networks, wireless communications, data networking, and optical imaging. In response to these developments, top-notch international experts in industry and academia present Circuits at the Nanoscale: Communications, Imaging, and Sensing. This volume, unique in both its scope and its focus, addresses the state-of-the-art in integrated circuit design in the context of emerging systems. A must for anyone serious about circuit design for future technologies, this book discusses emerging materials that can take system performance beyond standard CMOS. These include Silicon on Insulator (SOI), Silicon Germanium (SiGe), and Indium Phosphide (InP). Three-dimensional CMOS integration and co-integration with Microelectromechanical (MEMS) technology and radiation sensors are described as well. Topics in the book are divided into comprehensive sections on emerging design techniques, mixed-signal CMOS circuits, circuits for communications, and circuits for imaging and sensing. Dr. Krzysztof Iniewski is a director at CMOS Emerging Technologies, Inc., a consulting company in Vancouver, British Columbia. His current research interests are in VLSI ciruits for medical applications. He has published over 100 research papers in international journals and conferences, and he holds 18 international patents granted in the United States, Canada, France, Germany, and Japan. In this volume, he has assembled the contributions of over 60 world-reknown experts who are at the top of their field in the world of circuit design, advancing the bank of knowledge for all who work in this exciting and burgeoning area.