Multicore Hardware-software Design and Verification Techniques

Multicore Hardware-software Design and Verification Techniques
Title Multicore Hardware-software Design and Verification Techniques PDF eBook
Author Pao-Ann Hsiung
Publisher Bentham Science Publishers
Total Pages 105
Release 2011
Genre Computers
ISBN 1608052257

Download Multicore Hardware-software Design and Verification Techniques Book in PDF, Epub and Kindle

"The surge of multicore processors coming into the market and on users' desktops has made parallel computing the focus of attention once again. This time, however, it is led by the industry, which ensures that multicore computing is here to stay. Neverthel"

Hardware/Software Co-Design and Co-Verification

Hardware/Software Co-Design and Co-Verification
Title Hardware/Software Co-Design and Co-Verification PDF eBook
Author Jean-Michel Bergé
Publisher Springer Science & Business Media
Total Pages 178
Release 2013-03-09
Genre Technology & Engineering
ISBN 1475726295

Download Hardware/Software Co-Design and Co-Verification Book in PDF, Epub and Kindle

Co-Design is the set of emerging techniques which allows for the simultaneous design of Hardware and Software. In many cases where the application is very demanding in terms of various performances (time, surface, power consumption), trade-offs between dedicated hardware and dedicated software are becoming increasingly difficult to decide upon in the early stages of a design. Verification techniques - such as simulation or proof techniques - that have proven necessary in the hardware design must be dramatically adapted to the simultaneous verification of Software and Hardware. Describing the latest tools available for both Co-Design and Co-Verification of systems, Hardware/Software Co-Design and Co-Verification offers a complete look at this evolving set of procedures for CAD environments. The book considers all trade-offs that have to be made when co-designing a system. Several models are presented for determining the optimum solution to any co-design problem, including partitioning, architecture synthesis and code generation. When deciding on trade-offs, one of the main factors to be considered is the flow of communication, especially to and from the outside world. This involves the modeling of communication protocols. An approach to the synthesis of interface circuits in the context of co-design is presented. Other chapters present a co-design oriented flexible component data-base and retrieval methods; a case study of an ethernet bridge, designed using LOTOS and co-design methodologies and finally a programmable user interface based on monitors. Hardware/Software Co-Design and Co-Verification will help designers and researchers to understand these latest techniques in system design and as such will be of interest to all involved in embedded system design.

System-Level Validation

System-Level Validation
Title System-Level Validation PDF eBook
Author Mingsong Chen
Publisher Springer Science & Business Media
Total Pages 259
Release 2012-09-25
Genre Technology & Engineering
ISBN 1461413591

Download System-Level Validation Book in PDF, Epub and Kindle

This book covers state-of-the art techniques for high-level modeling and validation of complex hardware/software systems, including those with multicore architectures. Readers will learn to avoid time-consuming and error-prone validation from the comprehensive coverage of system-level validation, including high-level modeling of designs and faults, automated generation of directed tests, and efficient validation methodology using directed tests and assertions. The methodologies described in this book will help designers to improve the quality of their validation, performing as much validation as possible in the early stages of the design, while reducing the overall validation effort and cost.

MULTICORE SYSTEMS ON-CHIP

MULTICORE SYSTEMS ON-CHIP
Title MULTICORE SYSTEMS ON-CHIP PDF eBook
Author Ben Abadallah Abderazek
Publisher Springer Science & Business Media
Total Pages 196
Release 2010-08-01
Genre Computers
ISBN 9491216333

Download MULTICORE SYSTEMS ON-CHIP Book in PDF, Epub and Kindle

Conventional on-chip communication design mostly use ad-hoc approaches that fail to meet the challenges posed by the next-generation MultiCore Systems on-chip (MCSoC) designs. These major challenges include wiring delay, predictability, diverse interconnection architectures, and power dissipation. A Network-on-Chip (NoC) paradigm is emerging as the solution for the problems of interconnecting dozens of cores into a single system on-chip. However, there are many problems associated with the design of such systems. These problems arise from non-scalable global wire delays, failure to achieve global synchronization, and difficulties associated with non-scalable bus-based functional interconnects. The book consists of three parts, with each part being subdivided into four chapters. The first part deals with design and methodology issues. The architectures used in conventional methods of MCSoCs design and custom multiprocessor architectures are not flexible enough to meet the requirements of different application domains and not scalable enough to meet different computation needs and different complexities of various applications. Several chapters of the first part will emphasize on the design techniques and methodologies. The second part covers the most critical part of MCSoCs design — the interconnections. One approach to addressing the design methodologies is to adopt the so-called reusability feature to boost design productivity. In the past years, the primitive design units evolved from transistors to gates, finite state machines, and processor cores. The network-on-chip paradigm offers this attractive property for the future and will be able to close the productivity gap. The last part of this book delves into MCSoCs validations and optimizations. A more qualitative approach of system validation is based on the use of formal techniques for hardware design. The main advantage of formal methods is the possibility to prove the validity of essential design requirements. As formal languages have a mathematical foundation, it is possible to formally extract and verify these desired properties of the complete abstract state space. Online testing techniques for identifying faults that can lead to system failure are also surveyed. Emphasis is given to analytical redundancy-based techniques that have been developed for fault detection and isolation in the automatic control area.

Embedded Systems and Software Validation

Embedded Systems and Software Validation
Title Embedded Systems and Software Validation PDF eBook
Author Abhik Roychoudhury
Publisher Morgan Kaufmann
Total Pages 272
Release 2009-04-29
Genre Computers
ISBN 0080921256

Download Embedded Systems and Software Validation Book in PDF, Epub and Kindle

Modern embedded systems require high performance, low cost and low power consumption. Such systems typically consist of a heterogeneous collection of processors, specialized memory subsystems, and partially programmable or fixed-function components. This heterogeneity, coupled with issues such as hardware/software partitioning, mapping, scheduling, etc., leads to a large number of design possibilities, making performance debugging and validation of such systems a difficult problem. Embedded systems are used to control safety critical applications such as flight control, automotive electronics and healthcare monitoring. Clearly, developing reliable software/systems for such applications is of utmost importance. This book describes a host of debugging and verification methods which can help to achieve this goal. Covers the major abstraction levels of embedded systems design, starting from software analysis and micro-architectural modeling, to modeling of resource sharing and communication at the system level Integrates formal techniques of validation for hardware/software with debugging and validation of embedded system design flows Includes practical case studies to answer the questions: does a design meet its requirements, if not, then which parts of the system are responsible for the violation, and once they are identified, then how should the design be suitably modified?

Advanced Verification Techniques

Advanced Verification Techniques
Title Advanced Verification Techniques PDF eBook
Author Leena Singh
Publisher Springer Science & Business Media
Total Pages 388
Release 2007-05-08
Genre Technology & Engineering
ISBN 1402080298

Download Advanced Verification Techniques Book in PDF, Epub and Kindle

"As chip size and complexity continues to grow exponentially, the challenges of functional verification are becoming a critical issue in the electronics industry. It is now commonly heard that logical errors missed during functional verification are the most common cause of chip re-spins, and that the costs associated with functional verification are now outweighing the costs of chip design. To cope with these challenges engineers are increasingly relying on new design and verification methodologies and languages. Transaction-based design and verification, constrained random stimulus generation, functional coverage analysis, and assertion-based verification are all techniques that advanced design and verification teams routinely use today. Engineers are also increasingly turning to design and verification models based on C/C++ and SystemC in order to build more abstract, higher performance hardware and software models and to escape the limitations of RTL HDLs. This new book, Advanced Verification Techniques, provides specific guidance for these advanced verification techniques. The book includes realistic examples and shows how SystemC and SCV can be applied to a variety of advanced design and verification tasks." - Stuart Swan

High-Level Verification

High-Level Verification
Title High-Level Verification PDF eBook
Author Sudipta Kundu
Publisher Springer Science & Business Media
Total Pages 176
Release 2011-05-18
Genre Technology & Engineering
ISBN 1441993592

Download High-Level Verification Book in PDF, Epub and Kindle

Given the growing size and heterogeneity of Systems on Chip (SOC), the design process from initial specification to chip fabrication has become increasingly complex. This growing complexity provides incentive for designers to use high-level languages such as C, SystemC, and SystemVerilog for system-level design. While a major goal of these high-level languages is to enable verification at a higher level of abstraction, allowing early exploration of system-level designs, the focus so far for validation purposes has been on traditional testing techniques such as random testing and scenario-based testing. This book focuses on high-level verification, presenting a design methodology that relies upon advances in synthesis techniques as well as on incremental refinement of the design process. These refinements can be done manually or through elaboration tools. This book discusses verification of specific properties in designs written using high-level languages, as well as checking that the refined implementations are equivalent to their high-level specifications. The novelty of each of these techniques is that they use a combination of formal techniques to do scalable verification of system designs completely automatically. The verification techniques presented in this book include methods for verifying properties of high-level designs and methods for verifying that the translation from high-level design to a low-level Register Transfer Language (RTL) design preserves semantics. Used together, these techniques guarantee that properties verified in the high-level design are preserved through the translation to low-level RTL.