Introductory Quantum Mechanics for Applied Nanotechnology

Introductory Quantum Mechanics for Applied Nanotechnology
Title Introductory Quantum Mechanics for Applied Nanotechnology PDF eBook
Author Dae Mann Kim
Publisher John Wiley & Sons
Total Pages 392
Release 2016-05-04
Genre Science
ISBN 3527677178

Download Introductory Quantum Mechanics for Applied Nanotechnology Book in PDF, Epub and Kindle

This introductory textbook covers fundamental quantum mechanics from an application perspective, considering optoelectronic devices, biological sensors and molecular imagers as well as solar cells and field effect transistors. The book provides a brief review of classical and statistical mechanics and electromagnetism, and then turns to the quantum treatment of atoms, molecules, and chemical bonds. Aiming at senior undergraduate and graduate students in nanotechnology related areas like physics, materials science, and engineering, the book could be used at schools that offer interdisciplinary but focused training for future workers in the semiconductor industry and for the increasing number of related nanotechnology firms, and even practicing people could use it when they need to learn related concepts. The author is Professor Dae Mann Kim from the Korea Institute for Advanced Study who has been teaching Quantum Mechanics to engineering, material science and physics students for over 25 years in USA and Asia.

Introductory Quantum Mechanics for Semiconductor Nanotechnology

Introductory Quantum Mechanics for Semiconductor Nanotechnology
Title Introductory Quantum Mechanics for Semiconductor Nanotechnology PDF eBook
Author Dae Mann Kim
Publisher John Wiley & Sons
Total Pages 469
Release 2010-04-26
Genre Science
ISBN 3527409750

Download Introductory Quantum Mechanics for Semiconductor Nanotechnology Book in PDF, Epub and Kindle

The result of the nano education project run by the Korean Nano Technology Initiative, this has been recommended for use as official textbook by the Korean Nanotechnology Research Society. The author is highly experienced in teaching both physics and engineering in academia and industry, and naturally adopts an interdisciplinary approach here. He is short on formulations but long on applications, allowing students to understand the essential workings of quantum mechanics without spending too much time covering the wide realms of physics. He takes care to provide sufficient technical background and motivation for students to pursue further studies of advanced quantum mechanics and stresses the importance of translating quantum insights into useful and tangible innovations and inventions. As such, this is the only work to cover semiconductor nanotechnology from the perspective of introductory quantum mechanics, with applications including mainstream semiconductor technologies as well as (nano)devices, ranging from photodetectors, laser diodes, and solar cells to transistors and Schottky contacts. Problems are also provided to test the reader's understanding and supplementary material available includes working presentation files, solutions and instructors manuals.

Introductory Quantum Mechanics for Applied Nanotechnology

Introductory Quantum Mechanics for Applied Nanotechnology
Title Introductory Quantum Mechanics for Applied Nanotechnology PDF eBook
Author
Publisher
Total Pages 0
Release
Genre
ISBN

Download Introductory Quantum Mechanics for Applied Nanotechnology Book in PDF, Epub and Kindle

Introduction to Quantum Nanotechnology

Introduction to Quantum Nanotechnology
Title Introduction to Quantum Nanotechnology PDF eBook
Author Duncan G. Steel
Publisher Oxford University Press
Total Pages 352
Release 2021-04-30
Genre Technology & Engineering
ISBN 0192647970

Download Introduction to Quantum Nanotechnology Book in PDF, Epub and Kindle

Quantum is rapidly emerging as a game-changer in technology. The end of Moore's Law for exponential growth is rapidly approaching and engineers and physicist alike are looking at moving past the classical limitations of modern technology and are exploring the new opportunities that quantum behaviour creates in sensing, metrology, communications and information processing. This book serves as introduction to quantum theory with emphasis on dynamical behaviour and applications of quantum mechanics, with minimal discussion of formalism. The goal is to help students begin to learn the tools for a quantum toolbox they will need to work in this area. It is aimed at upper level undergraduates and first year graduate students and assumes the reader has not had any training in quantum mechanics beyond what might be encountered in two semesters of introductory physics. The language of quantum is mathematics and builds on what is covered in typically the first two years. The first six chapters introduce Schrödinger's equation and develop the quantized description of common systems that exist in real space like a vibrator, nano-particles, atoms, crystals, etc. Beginning in Ch. 7 and for the remaining nine chapters, the focus is primarily on dynamical behaviour and how to think about real quantum systems. Spin, the quantized electromagnetic field, dissipation, loss and spontaneous emission, are discussed as well as quantum optics and the operator equations for common two-state systems such as the quantum flip flop and the density matrix equations. The book is structured so that a two semester course sequence is possible or a single semester course with options discussed in the preface to set different learning objectives. Even a one semester course based on this text covers much more material than a typical upper quantum course for undergraduates in physics, but at the expense of more detailed discussions about solutions to various differential equations such as for angular momentum and the hydrogen atom or band theory for semiconductors.

Quantum Mechanics with Applications to Nanotechnology and Information Science

Quantum Mechanics with Applications to Nanotechnology and Information Science
Title Quantum Mechanics with Applications to Nanotechnology and Information Science PDF eBook
Author Yehuda B. Band
Publisher Academic Press
Total Pages 993
Release 2013-01-10
Genre Science
ISBN 0444537872

Download Quantum Mechanics with Applications to Nanotechnology and Information Science Book in PDF, Epub and Kindle

Quantum mechanics transcends and supplants classical mechanics at the atomic and subatomic levels. It provides the underlying framework for many subfields of physics, chemistry and materials science, including condensed matter physics, atomic physics, molecular physics, quantum chemistry, particle physics, and nuclear physics. It is the only way we can understand the structure of materials, from the semiconductors in our computers to the metal in our automobiles. It is also the scaffolding supporting much of nanoscience and nanotechnology. The purpose of this book is to present the fundamentals of quantum theory within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology. As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today. Hence, the emphasis on new topics that are not included in older reference texts, such as quantum information theory, decoherence and dissipation, and on applications to nanotechnology, including quantum dots, wires and wells. This book provides a novel approach to Quantum Mechanics whilst also giving readers the requisite background and training for the scientists and engineers of the 21st Century who need to come to grips with quantum phenomena The fundamentals of quantum theory are provided within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology Older books on quantum mechanics do not contain the amalgam of ideas, concepts and tools necessary to prepare engineers and scientists to deal with the new facets of quantum mechanics and their application to quantum information science and nanotechnology As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today There are many excellent quantum mechanics books available, but none have the emphasis on nanotechnology and quantum information science that this book has

Quantum Mechanics for Scientists and Engineers

Quantum Mechanics for Scientists and Engineers
Title Quantum Mechanics for Scientists and Engineers PDF eBook
Author David A. B. Miller
Publisher Cambridge University Press
Total Pages 575
Release 2008-04-21
Genre Technology & Engineering
ISBN 1139471279

Download Quantum Mechanics for Scientists and Engineers Book in PDF, Epub and Kindle

If you need a book that relates the core principles of quantum mechanics to modern applications in engineering, physics, and nanotechnology, this is it. Students will appreciate the book's applied emphasis, which illustrates theoretical concepts with examples of nanostructured materials, optics, and semiconductor devices. The many worked examples and more than 160 homework problems help students to problem solve and to practise applications of theory. Without assuming a prior knowledge of high-level physics or classical mechanics, the text introduces Schrödinger's equation, operators, and approximation methods. Systems, including the hydrogen atom and crystalline materials, are analyzed in detail. More advanced subjects, such as density matrices, quantum optics, and quantum information, are also covered. Practical applications and algorithms for the computational analysis of simple structures make this an ideal introduction to quantum mechanics for students of engineering, physics, nanotechnology, and other disciplines. Additional resources available from www.cambridge.org/9780521897839.

Applied Quantum Mechanics

Applied Quantum Mechanics
Title Applied Quantum Mechanics PDF eBook
Author Walter Ashley Harrison
Publisher World Scientific
Total Pages 376
Release 2000
Genre Science
ISBN 9789810243753

Download Applied Quantum Mechanics Book in PDF, Epub and Kindle

Quantum mechanics is widely recognized as the basic law which governs all of nature, including all materials and devices. It has always been essential to the understanding of material properties, and as devices become smaller it is also essential for studying their behavior. Nevertheless, only a small fraction of graduate engineers and materials scientists take a course giving a systematic presentation of the subject. The courses for physics students tend to focus on the fundamentals and formal background, rather than on application, and do not fill the need. This invaluable text has been designed to fill the very apparent gap.The book covers those parts of quantum theory which may be necessary for a modern engineer. It focuses on the approximations and concepts which allow estimates of the entire range of properties of nuclei, atoms, molecules, and solids, as well as the behavior of lasers and other quantum-optic devices. It may well prove useful also to graduate students in physics, whose courses on quantum theory tend not to include any of these applications. The material has been the basis of a course taught to graduate engineering students for the past four years at Stanford University.Topics Discussed: Foundations; Simple Systems; Hamiltonian Mechanics; Atoms and Nuclei; Molecules; Crystals; Transitions; Tunneling; Transition Rates; Statistical Mechanics; Transport; Noise; Energy Bands; Electron Dynamics in Solids; Vibrations in Solids; Creation and Annihilation Operators; Phonons; Photons and Lasers; Coherent States; Coulomb Effects; Cooperative Phenomena; Magnetism; Shake-off Excitations; Exercise Problems.