Handbook of Uncertainty Quantification

Handbook of Uncertainty Quantification
Title Handbook of Uncertainty Quantification PDF eBook
Author Roger Ghanem
Publisher
Total Pages
Release 2017
Genre
ISBN

Download Handbook of Uncertainty Quantification Book in PDF, Epub and Kindle

Handbook of Uncertainty Quantification

Handbook of Uncertainty Quantification
Title Handbook of Uncertainty Quantification PDF eBook
Author Roger Ghanem
Publisher Springer
Total Pages 0
Release 2016-05-08
Genre Mathematics
ISBN 9783319123844

Download Handbook of Uncertainty Quantification Book in PDF, Epub and Kindle

The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.

Introduction to Uncertainty Quantification

Introduction to Uncertainty Quantification
Title Introduction to Uncertainty Quantification PDF eBook
Author T.J. Sullivan
Publisher Springer
Total Pages 342
Release 2015-12-14
Genre Mathematics
ISBN 3319233955

Download Introduction to Uncertainty Quantification Book in PDF, Epub and Kindle

This text provides a framework in which the main objectives of the field of uncertainty quantification (UQ) are defined and an overview of the range of mathematical methods by which they can be achieved. Complete with exercises throughout, the book will equip readers with both theoretical understanding and practical experience of the key mathematical and algorithmic tools underlying the treatment of uncertainty in modern applied mathematics. Students and readers alike are encouraged to apply the mathematical methods discussed in this book to their own favorite problems to understand their strengths and weaknesses, also making the text suitable for a self-study. Uncertainty quantification is a topic of increasing practical importance at the intersection of applied mathematics, statistics, computation and numerous application areas in science and engineering. This text is designed as an introduction to UQ for senior undergraduate and graduate students with a mathematical or statistical background and also for researchers from the mathematical sciences or from applications areas who are interested in the field. T. J. Sullivan was Warwick Zeeman Lecturer at the Mathematics Institute of the University of Warwick, United Kingdom, from 2012 to 2015. Since 2015, he is Junior Professor of Applied Mathematics at the Free University of Berlin, Germany, with specialism in Uncertainty and Risk Quantification.

Uncertainty Quantification

Uncertainty Quantification
Title Uncertainty Quantification PDF eBook
Author Ralph C. Smith
Publisher SIAM
Total Pages 400
Release 2013-12-02
Genre Computers
ISBN 1611973228

Download Uncertainty Quantification Book in PDF, Epub and Kindle

The field of uncertainty quantification is evolving rapidly because of increasing emphasis on models that require quantified uncertainties for large-scale applications, novel algorithm development, and new computational architectures that facilitate implementation of these algorithms. Uncertainty Quantification: Theory, Implementation, and Applications provides readers with the basic concepts, theory, and algorithms necessary to quantify input and response uncertainties for simulation models arising in a broad range of disciplines. The book begins with a detailed discussion of applications where uncertainty quantification is critical for both scientific understanding and policy. It then covers concepts from probability and statistics, parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, surrogate model construction, and local and global sensitivity analysis. The author maintains a complementary web page where readers can find data used in the exercises and other supplementary material.

Uncertainty Analysis for Engineers and Scientists

Uncertainty Analysis for Engineers and Scientists
Title Uncertainty Analysis for Engineers and Scientists PDF eBook
Author Faith A. Morrison
Publisher Cambridge University Press
Total Pages 389
Release 2021-01-07
Genre Computers
ISBN 1108478352

Download Uncertainty Analysis for Engineers and Scientists Book in PDF, Epub and Kindle

Build the skills for determining appropriate error limits for quantities that matter with this essential toolkit. Understand how to handle a complete project and how uncertainty enters into various steps. Provides a systematic, worksheet-based process to determine error limits on measured quantities, and all likely sources of uncertainty are explored, measured or estimated. Features instructions on how to carry out error analysis using Excel and MATLABĀ®, making previously tedious calculations easy. Whether you are new to the sciences or an experienced engineer, this useful resource provides a practical approach to performing error analysis. Suitable as a text for a junior or senior level laboratory course in aerospace, chemical and mechanical engineering, and for professionals.

Handbook of Probabilistic Models

Handbook of Probabilistic Models
Title Handbook of Probabilistic Models PDF eBook
Author Pijush Samui
Publisher Butterworth-Heinemann
Total Pages 590
Release 2019-10-05
Genre Computers
ISBN 0128165464

Download Handbook of Probabilistic Models Book in PDF, Epub and Kindle

Handbook of Probabilistic Models carefully examines the application of advanced probabilistic models in conventional engineering fields. In this comprehensive handbook, practitioners, researchers and scientists will find detailed explanations of technical concepts, applications of the proposed methods, and the respective scientific approaches needed to solve the problem. This book provides an interdisciplinary approach that creates advanced probabilistic models for engineering fields, ranging from conventional fields of mechanical engineering and civil engineering, to electronics, electrical, earth sciences, climate, agriculture, water resource, mathematical sciences and computer sciences. Specific topics covered include minimax probability machine regression, stochastic finite element method, relevance vector machine, logistic regression, Monte Carlo simulations, random matrix, Gaussian process regression, Kalman filter, stochastic optimization, maximum likelihood, Bayesian inference, Bayesian update, kriging, copula-statistical models, and more. Explains the application of advanced probabilistic models encompassing multidisciplinary research Applies probabilistic modeling to emerging areas in engineering Provides an interdisciplinary approach to probabilistic models and their applications, thus solving a wide range of practical problems

Uncertainty Quantification for Hyperbolic and Kinetic Equations

Uncertainty Quantification for Hyperbolic and Kinetic Equations
Title Uncertainty Quantification for Hyperbolic and Kinetic Equations PDF eBook
Author Shi Jin
Publisher Springer
Total Pages 277
Release 2018-03-20
Genre Mathematics
ISBN 3319671103

Download Uncertainty Quantification for Hyperbolic and Kinetic Equations Book in PDF, Epub and Kindle

This book explores recent advances in uncertainty quantification for hyperbolic, kinetic, and related problems. The contributions address a range of different aspects, including: polynomial chaos expansions, perturbation methods, multi-level Monte Carlo methods, importance sampling, and moment methods. The interest in these topics is rapidly growing, as their applications have now expanded to many areas in engineering, physics, biology and the social sciences. Accordingly, the book provides the scientific community with a topical overview of the latest research efforts.