Finite-Time Stability: An Input-Output Approach

Finite-Time Stability: An Input-Output Approach
Title Finite-Time Stability: An Input-Output Approach PDF eBook
Author Francesco Amato
Publisher John Wiley & Sons
Total Pages 184
Release 2018-10-08
Genre Technology & Engineering
ISBN 1119140528

Download Finite-Time Stability: An Input-Output Approach Book in PDF, Epub and Kindle

Systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, covering issues of analysis, design and robustness The interest in finite-time control has continuously grown in the last fifteen years. This book systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, with specific reference to linear time-varying systems and hybrid systems. It discusses analysis, design and robustness issues, and includes applications to real world engineering problems. While classical FTS has an important theoretical significance, IO-FTS is a more practical concept, which is more suitable for real engineering applications, the goal of the research on this topic in the coming years. Key features: Includes applications to real world engineering problems. Input-output finite-time stability (IO-FTS) is a practical concept, useful to study the behavior of a dynamical system within a finite interval of time. Computationally tractable conditions are provided that render the technique applicable to time-invariant as well as time varying and impulsive (i.e. switching) systems. The LMIs formulation allows mixing the IO-FTS approach with existing control techniques (e. g. H∞ control, optimal control, pole placement, etc.). This book is essential reading for university researchers as well as post-graduate engineers practicing in the field of robust process control in research centers and industries. Topics dealt with in the book could also be taught at the level of advanced control courses for graduate students in the department of electrical and computer engineering, mechanical engineering, aeronautics and astronautics, and applied mathematics.

Finite-Time Stability: An Input-Output Approach

Finite-Time Stability: An Input-Output Approach
Title Finite-Time Stability: An Input-Output Approach PDF eBook
Author Francesco Amato
Publisher John Wiley & Sons
Total Pages 184
Release 2018-07-19
Genre Technology & Engineering
ISBN 1119140560

Download Finite-Time Stability: An Input-Output Approach Book in PDF, Epub and Kindle

Systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, covering issues of analysis, design and robustness The interest in finite-time control has continuously grown in the last fifteen years. This book systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, with specific reference to linear time-varying systems and hybrid systems. It discusses analysis, design and robustness issues, and includes applications to real world engineering problems. While classical FTS has an important theoretical significance, IO-FTS is a more practical concept, which is more suitable for real engineering applications, the goal of the research on this topic in the coming years. Key features: Includes applications to real world engineering problems. Input-output finite-time stability (IO-FTS) is a practical concept, useful to study the behavior of a dynamical system within a finite interval of time. Computationally tractable conditions are provided that render the technique applicable to time-invariant as well as time varying and impulsive (i.e. switching) systems. The LMIs formulation allows mixing the IO-FTS approach with existing control techniques (e. g. H∞ control, optimal control, pole placement, etc.). This book is essential reading for university researchers as well as post-graduate engineers practicing in the field of robust process control in research centers and industries. Topics dealt with in the book could also be taught at the level of advanced control courses for graduate students in the department of electrical and computer engineering, mechanical engineering, aeronautics and astronautics, and applied mathematics.

Fault-Tolerant Control for Time-Varying Delayed T-S Fuzzy Systems

Fault-Tolerant Control for Time-Varying Delayed T-S Fuzzy Systems
Title Fault-Tolerant Control for Time-Varying Delayed T-S Fuzzy Systems PDF eBook
Author Shaoxin Sun
Publisher Springer Nature
Total Pages 230
Release 2023-06-16
Genre Technology & Engineering
ISBN 9819913578

Download Fault-Tolerant Control for Time-Varying Delayed T-S Fuzzy Systems Book in PDF, Epub and Kindle

This book delves into the complexities of fault estimation and fault-tolerant control for nonlinear time-delayed systems. Through the use of multiple-integral observers, it addresses fault estimation and active fault-tolerant control for time-delayed fuzzy systems with actuator faults and both actuator and sensor faults. Additionally, the book explores the use of sliding mode control to solve issues of sensor fault estimation, intermittent actuator fault estimation, and active fault-tolerant control for time-delayed switched fuzzy systems. Furthermore, it presents the use of H∞ guaranteed cost control for both time-delayed switched fuzzy systems and time-delayed switched fuzzy stochastic systems with intermittent actuator and sensor faults. Finally, the problem of delay-dependent finite-time fault-tolerant control for uncertain switched T-S fuzzy systems with multiple time-varying delays, intermittent process faults and intermittent sensor faults is studied. The research on fault estimation and tolerant control has drawn attention from engineers and scientists in various fields such as electrical, mechanical, aerospace, chemical, and nuclear engineering. The book provides a comprehensive framework for this topic, placing a strong emphasis on the importance of stability analysis and the impact of result conservatism on the design and implementation of observers and controllers. It is intended for undergraduate and graduate students interested in fault diagnosis and tolerant control technology, researchers studying time-varying delayed T-S fuzzy systems, and observer/controller design engineers working on system stability applications.

Finite-Time Stability and Control

Finite-Time Stability and Control
Title Finite-Time Stability and Control PDF eBook
Author Francesco Amato
Publisher Springer
Total Pages 147
Release 2013-12-03
Genre Technology & Engineering
ISBN 1447156641

Download Finite-Time Stability and Control Book in PDF, Epub and Kindle

Finite-time stability (FTS) is a more practical concept than classical Lyapunov stability, useful for checking whether the state trajectories of a system remain within pre-specified bounds over a finite time interval. In a linear systems framework, FTS problems can be cast as convex optimization problems and solved by the use of effective off-the-shelf computational tools such as LMI solvers. Finite-time Stability and Control exploits this benefit to present the practical applications of FTS and finite-time control-theoretical results to various engineering fields. The text is divided into two parts: · linear systems; and · hybrid systems. The building of practical motivating examples helps the reader to understand the methods presented. Finite-time Stability and Control is addressed to academic researchers and to engineers working in the field of robust process control. Instructors teaching graduate courses in advanced control will also find parts of this book useful for their courses.

Robust Control for Discrete-Time Markovian Jump Systems in the Finite-Time Domain

Robust Control for Discrete-Time Markovian Jump Systems in the Finite-Time Domain
Title Robust Control for Discrete-Time Markovian Jump Systems in the Finite-Time Domain PDF eBook
Author Xiaoli Luan
Publisher Springer Nature
Total Pages 212
Release 2023-02-13
Genre Technology & Engineering
ISBN 3031221826

Download Robust Control for Discrete-Time Markovian Jump Systems in the Finite-Time Domain Book in PDF, Epub and Kindle

This book provides robust analysis and synthesis tools for Markovian jump systems in the finite-time domain with specified performances. It explores how these tools can make the systems more applicable to fields such as economic systems, ecological systems and solar thermal central receivers, by limiting system trajectories in the desired bound in a given time interval. Robust Control for Discrete-Time Markovian Jump Systems in the Finite-Time Domain focuses on multiple aspects of finite-time stability and control, including: finite-time H-infinity control; finite-time sliding mode control; finite-time multi-frequency control; finite-time model predictive control; and high-order moment finite-time control for multi-mode systems and also provides many methods and algorithms to solve problems related to Markovian jump systems with simulation examples that illustrate the design procedure and confirm the results of the methods proposed. The thorough discussion of these topics makes the book a useful guide for researchers, industrial engineers and graduate students alike, enabling them systematically to establish the modeling, analysis and synthesis for Markovian jump systems in the finite-time domain.

Nonlinear Dynamical Systems and Control

Nonlinear Dynamical Systems and Control
Title Nonlinear Dynamical Systems and Control PDF eBook
Author Wassim M. Haddad
Publisher Princeton University Press
Total Pages 975
Release 2011-09-19
Genre Mathematics
ISBN 1400841046

Download Nonlinear Dynamical Systems and Control Book in PDF, Epub and Kindle

Nonlinear Dynamical Systems and Control presents and develops an extensive treatment of stability analysis and control design of nonlinear dynamical systems, with an emphasis on Lyapunov-based methods. Dynamical system theory lies at the heart of mathematical sciences and engineering. The application of dynamical systems has crossed interdisciplinary boundaries from chemistry to biochemistry to chemical kinetics, from medicine to biology to population genetics, from economics to sociology to psychology, and from physics to mechanics to engineering. The increasingly complex nature of engineering systems requiring feedback control to obtain a desired system behavior also gives rise to dynamical systems. Wassim Haddad and VijaySekhar Chellaboina provide an exhaustive treatment of nonlinear systems theory and control using the highest standards of exposition and rigor. This graduate-level textbook goes well beyond standard treatments by developing Lyapunov stability theory, partial stability, boundedness, input-to-state stability, input-output stability, finite-time stability, semistability, stability of sets and periodic orbits, and stability theorems via vector Lyapunov functions. A complete and thorough treatment of dissipativity theory, absolute stability theory, stability of feedback systems, optimal control, disturbance rejection control, and robust control for nonlinear dynamical systems is also given. This book is an indispensable resource for applied mathematicians, dynamical systems theorists, control theorists, and engineers.

Multi-model Jumping Systems: Robust Filtering and Fault Detection

Multi-model Jumping Systems: Robust Filtering and Fault Detection
Title Multi-model Jumping Systems: Robust Filtering and Fault Detection PDF eBook
Author Shuping He
Publisher Springer Nature
Total Pages 188
Release 2021-03-01
Genre Technology & Engineering
ISBN 9813364742

Download Multi-model Jumping Systems: Robust Filtering and Fault Detection Book in PDF, Epub and Kindle

This book focuses on multi-model systems, describing how to apply intelligent technologies to model complex multi-model systems by combining stochastic jumping system, neural network and fuzzy models. It focuses on robust filtering, including finite-time robust filtering, finite-frequency robust filtering and higher order moment robust filtering schemes, as well as fault detection problems for multi-model jump systems, such as observer-based robust fault detection, filtering-based robust fault detection and neural network-based robust fault detection methods. The book also demonstrates the validity and practicability of the theoretical results using simulation and practical examples, like circuit systems, robot systems and power systems. Further, it introduces readers to methods such as finite-time filtering, finite-frequency robust filtering, as well as higher order moment and neural network-based fault detection methods for multi-model jumping systems, allowing them to grasp the modeling, analysis and design of the multi-model systems presented and implement filtering and fault detection analysis for various systems, including circuit, network and mechanical systems.