Finite Element Analysis of Structures through Unified Formulation

Finite Element Analysis of Structures through Unified Formulation
Title Finite Element Analysis of Structures through Unified Formulation PDF eBook
Author Erasmo Carrera
Publisher John Wiley & Sons
Total Pages 569
Release 2014-07-29
Genre Mathematics
ISBN 1118536657

Download Finite Element Analysis of Structures through Unified Formulation Book in PDF, Epub and Kindle

The finite element method (FEM) is a computational tool widely used to design and analyse complex structures. Currently, there are a number of different approaches to analysis using the FEM that vary according to the type of structure being analysed: beams and plates may use 1D or 2D approaches, shells and solids 2D or 3D approaches, and methods that work for one structure are typically not optimized to work for another. Finite Element Analysis of Structures Through Unified Formulation deals with the FEM used for the analysis of the mechanics of structures in the case of linear elasticity. The novelty of this book is that the finite elements (FEs) are formulated on the basis of a class of theories of structures known as the Carrera Unified Formulation (CUF). It formulates 1D, 2D and 3D FEs on the basis of the same 'fundamental nucleus' that comes from geometrical relations and Hooke's law, and presents both 1D and 2D refined FEs that only have displacement variables as in 3D elements. It also covers 1D and 2D FEs that make use of 'real' physical surfaces rather than ’artificial’ mathematical surfaces which are difficult to interface in CAD/CAE software. Key features: Covers how the refined formulation can be easily and conveniently used to analyse laminated structures, such as sandwich and composite structures, and to deal with multifield problems Shows the performance of different FE models through the 'best theory diagram' which allows different models to be compared in terms of accuracy and computational cost Introduces an axiomatic/asymptotic approach that reduces the computational cost of the structural analysis without affecting the accuracy Introduces an innovative 'component-wise' approach to deal with complex structures Accompanied by a website hosting the dedicated software package MUL2 (www.mul2.com) Finite Element Analysis of Structures Through Unified Formulation is a valuable reference for researchers and practitioners, and is also a useful source of information for graduate students in civil, mechanical and aerospace engineering.

A Unified Approach to the Finite Element Method and Error Analysis Procedures

A Unified Approach to the Finite Element Method and Error Analysis Procedures
Title A Unified Approach to the Finite Element Method and Error Analysis Procedures PDF eBook
Author Julian A. T. Dow
Publisher Elsevier
Total Pages 559
Release 1998-11-09
Genre Technology & Engineering
ISBN 0080543421

Download A Unified Approach to the Finite Element Method and Error Analysis Procedures Book in PDF, Epub and Kindle

A Unified Approach to the Finite Element Method and Error Analysis Procedures provides an in-depth background to better understanding of finite element results and techniques for improving accuracy of finite element methods. Thus, the reader is able to identify and eliminate errors contained in finite element models. Three different error analysis techniques are systematically developed from a common theoretical foundation: 1) modeling erros in individual elements; 2) discretization errors in the overall model; 3) point-wise errors in the final stress or strain results. Thoroughly class tested with undergraduate and graduate students. A Unified Approach to the Finite Element Method and Error Analysis Procedures is sure to become an essential resource for students as well as practicing engineers and researchers. New, simpler element formulation techniques, model-independent results, and error measures New polynomial-based methods for identifying critical points New procedures for evaluating sheer/strain accuracy Accessible to undergraduates, insightful to researchers, and useful to practitioners Taylor series (polynomial) based Intuitive elemental and point-wise error measures Essential background information provided in 12 appendices

Finite Element Analysis for Composite Structures

Finite Element Analysis for Composite Structures
Title Finite Element Analysis for Composite Structures PDF eBook
Author L.T. Tenek
Publisher Springer Science & Business Media
Total Pages 345
Release 2013-04-18
Genre Technology & Engineering
ISBN 9401590443

Download Finite Element Analysis for Composite Structures Book in PDF, Epub and Kindle

This book is an adventure into the computer analysis of three dimensional composite structures using the finite element method (FEM). It is designed for Universities, for advanced undergraduates, for graduates, for researchers, and for practising engineers in industry. The text advances gradually from the analysis of simple beams to arbitrary anisotropic and composite plates and shells; it treats both linear and nonlinear behavior. Once the basic philosophy of the method is understood, the reader may expand its application and modify the computer programs to suit particular needs. The book arose from four years research at the University of Stuttgart, Germany. We present the theory and computer programs concisely and systematically so that they can be used both for teaching and applications. We have tried to make the book simple and clear, and to show the underlying physical and mathematical ideas. The FEM has been in existence for more than 50 years. One of the authors, John Argyris, invented this technique in World War II in the course of the check on the analysis of the swept back wing of the twin engined Meteor Jet Fighter. In this work, he also consistently applied matrix calculus and introduced triangular membrane elements in conjunction with two new definitions of triangular stresses and strains which are now known as the component and total measures. In fact, he was responsible for the original formulation of the matrix force and displacement methods, the forerunners of the FEM.

Matrix and Finite Element Analyses of Structures

Matrix and Finite Element Analyses of Structures
Title Matrix and Finite Element Analyses of Structures PDF eBook
Author Madhujit Mukhopadhyay
Publisher Springer Nature
Total Pages 482
Release 2022-11-25
Genre Science
ISBN 3031087240

Download Matrix and Finite Element Analyses of Structures Book in PDF, Epub and Kindle

This textbook has been primarily written for undergraduate and postgraduate engineering students studying the mechanics of solids and structural systems. The content focuses on matrix, finite elements, structural analysis, and computer implementation in a unified and integrated manner. Using classical methods of structural analysis, it discusses matrix and the finite element methods in an easy-to-understand manner. It consists of a large number of diagrams and illustrations for easy understanding of the concepts. All the computer codes are presented in "FORTRAN" AND "C". This textbook is highly useful for the undergraduate and postgraduate engineering students. It also acquaints the practicing engineers about the computer-based techniques used in structural analysis.

Structural Analysis with the Finite Element Method. Linear Statics

Structural Analysis with the Finite Element Method. Linear Statics
Title Structural Analysis with the Finite Element Method. Linear Statics PDF eBook
Author Eugenio Oñate
Publisher Springer Science & Business Media
Total Pages 495
Release 2010-02-25
Genre Technology & Engineering
ISBN 1402087330

Download Structural Analysis with the Finite Element Method. Linear Statics Book in PDF, Epub and Kindle

STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 1 : The Basis and Solids Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM). The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume1 presents the basis of the FEM for structural analysis and a detailed description of the finite element formulation for axially loaded bars, plane elasticity problems, axisymmetric solids and general three dimensional solids. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems. The book includes a chapter on miscellaneous topics such as treatment of inclined supports, elastic foundations, stress smoothing, error estimation and adaptive mesh refinement techniques, among others. The text concludes with a chapter on the mesh generation and visualization of FEM results. The book will be useful for students approaching the finite element analysis of structures for the first time, as well as for practising engineers interested in the details of the formulation and performance of the different finite elements for practical structural analysis. STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 2: Beams, Plates and Shells Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM).The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume 2 presents a detailed description of the finite element formulation for analysis of slender and thick beams, thin and thick plates, folded plate structures, axisymmetric shells, general curved shells, prismatic structures and three dimensional beams. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems Emphasis is put on the treatment of structures with layered composite materials. The book will be useful for students approaching the finite element analysis of beam, plate and shell structures for the first time, as well as for practising engineers interested in the details of the formulation and performance of the different finite elements for practical structural analysis.

Beam Structures

Beam Structures
Title Beam Structures PDF eBook
Author Erasmo Carrera
Publisher John Wiley & Sons
Total Pages 171
Release 2011-07-28
Genre Science
ISBN 1119951046

Download Beam Structures Book in PDF, Epub and Kindle

Beam theories are exploited worldwide to analyze civil, mechanical, automotive, and aerospace structures. Many beam approaches have been proposed during the last centuries by eminent scientists such as Euler, Bernoulli, Navier, Timoshenko, Vlasov, etc. Most of these models are problem dependent: they provide reliable results for a given problem, for instance a given section and cannot be applied to a different one. Beam Structures: Classical and Advanced Theories proposes a new original unified approach to beam theory that includes practically all classical and advanced models for beams and which has become established and recognised globally as the most important contribution to the field in the last quarter of a century. The Carrera Unified Formulation (CUF) has hierarchical properties, that is, the error can be reduced by increasing the number of the unknown variables. This formulation is extremely suitable for computer implementations and can deal with most typical engineering challenges. It overcomes the problem of classical formulae that require different formulas for tension, bending, shear and torsion; it can be applied to any beam geometries and loading conditions, reaching a high level of accuracy with low computational cost, and can tackle problems that in most cases are solved by employing plate/shell and 3D formulations. Key features: compares classical and modern approaches to beam theory, including classical well-known results related to Euler-Bernoulli and Timoshenko beam theories pays particular attention to typical applications related to bridge structures, aircraft wings, helicopters and propeller blades provides a number of numerical examples including typical Aerospace and Civil Engineering problems proposes many benchmark assessments to help the reader implement the CUF if they wish to do so accompanied by a companion website hosting dedicated software MUL2 that is used to obtain the numerical solutions in the book, allowing the reader to reproduce the examples given in the book as well as to solve other problems of their own www.mul2.com Researchers of continuum mechanics of solids and structures and structural analysts in industry will find this book extremely insightful. It will also be of great interest to graduate and postgraduate students of mechanical, civil and aerospace engineering.

Fundamentals of Finite Element Analysis

Fundamentals of Finite Element Analysis
Title Fundamentals of Finite Element Analysis PDF eBook
Author Ioannis Koutromanos
Publisher John Wiley & Sons
Total Pages 724
Release 2018-02-12
Genre Technology & Engineering
ISBN 1119260086

Download Fundamentals of Finite Element Analysis Book in PDF, Epub and Kindle

An introductory textbook covering the fundamentals of linear finite element analysis (FEA) This book constitutes the first volume in a two-volume set that introduces readers to the theoretical foundations and the implementation of the finite element method (FEM). The first volume focuses on the use of the method for linear problems. A general procedure is presented for the finite element analysis (FEA) of a physical problem, where the goal is to specify the values of a field function. First, the strong form of the problem (governing differential equations and boundary conditions) is formulated. Subsequently, a weak form of the governing equations is established. Finally, a finite element approximation is introduced, transforming the weak form into a system of equations where the only unknowns are nodal values of the field function. The procedure is applied to one-dimensional elasticity and heat conduction, multi-dimensional steady-state scalar field problems (heat conduction, chemical diffusion, flow in porous media), multi-dimensional elasticity and structural mechanics (beams/shells), as well as time-dependent (dynamic) scalar field problems, elastodynamics and structural dynamics. Important concepts for finite element computations, such as isoparametric elements for multi-dimensional analysis and Gaussian quadrature for numerical evaluation of integrals, are presented and explained. Practical aspects of FEA and advanced topics, such as reduced integration procedures, mixed finite elements and verification and validation of the FEM are also discussed. Provides detailed derivations of finite element equations for a variety of problems. Incorporates quantitative examples on one-dimensional and multi-dimensional FEA. Provides an overview of multi-dimensional linear elasticity (definition of stress and strain tensors, coordinate transformation rules, stress-strain relation and material symmetry) before presenting the pertinent FEA procedures. Discusses practical and advanced aspects of FEA, such as treatment of constraints, locking, reduced integration, hourglass control, and multi-field (mixed) formulations. Includes chapters on transient (step-by-step) solution schemes for time-dependent scalar field problems and elastodynamics/structural dynamics. Contains a chapter dedicated to verification and validation for the FEM and another chapter dedicated to solution of linear systems of equations and to introductory notions of parallel computing. Includes appendices with a review of matrix algebra and overview of matrix analysis of discrete systems. Accompanied by a website hosting an open-source finite element program for linear elasticity and heat conduction, together with a user tutorial. Fundamentals of Finite Element Analysis: Linear Finite Element Analysis is an ideal text for undergraduate and graduate students in civil, aerospace and mechanical engineering, finite element software vendors, as well as practicing engineers and anybody with an interest in linear finite element analysis.