Differential Galois Theory through Riemann-Hilbert Correspondence

Differential Galois Theory through Riemann-Hilbert Correspondence
Title Differential Galois Theory through Riemann-Hilbert Correspondence PDF eBook
Author Jacques Sauloy
Publisher American Mathematical Soc.
Total Pages 275
Release 2016-12-07
Genre Galois theory
ISBN 1470430959

Download Differential Galois Theory through Riemann-Hilbert Correspondence Book in PDF, Epub and Kindle

Differential Galois theory is an important, fast developing area which appears more and more in graduate courses since it mixes fundamental objects from many different areas of mathematics in a stimulating context. For a long time, the dominant approach, usually called Picard-Vessiot Theory, was purely algebraic. This approach has been extensively developed and is well covered in the literature. An alternative approach consists in tagging algebraic objects with transcendental information which enriches the understanding and brings not only new points of view but also new solutions. It is very powerful and can be applied in situations where the Picard-Vessiot approach is not easily extended. This book offers a hands-on transcendental approach to differential Galois theory, based on the Riemann-Hilbert correspondence. Along the way, it provides a smooth, down-to-earth introduction to algebraic geometry, category theory and tannakian duality. Since the book studies only complex analytic linear differential equations, the main prerequisites are complex function theory, linear algebra, and an elementary knowledge of groups and of polynomials in many variables. A large variety of examples, exercises, and theoretical constructions, often via explicit computations, offers first-year graduate students an accessible entry into this exciting area.

Galois Theory of Linear Differential Equations

Galois Theory of Linear Differential Equations
Title Galois Theory of Linear Differential Equations PDF eBook
Author Marius van der Put
Publisher Springer Science & Business Media
Total Pages 438
Release 2012-12-06
Genre Mathematics
ISBN 3642557503

Download Galois Theory of Linear Differential Equations Book in PDF, Epub and Kindle

From the reviews: "This is a great book, which will hopefully become a classic in the subject of differential Galois theory. [...] the specialist, as well as the novice, have long been missing an introductory book covering also specific and advanced research topics. This gap is filled by the volume under review, and more than satisfactorily." Mathematical Reviews

Noncommutative Geometry, Quantum Fields and Motives

Noncommutative Geometry, Quantum Fields and Motives
Title Noncommutative Geometry, Quantum Fields and Motives PDF eBook
Author Alain Connes
Publisher American Mathematical Soc.
Total Pages 785
Release 2019-03-13
Genre
ISBN 1470450453

Download Noncommutative Geometry, Quantum Fields and Motives Book in PDF, Epub and Kindle

The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.

Transcendence in Algebra, Combinatorics, Geometry and Number Theory

Transcendence in Algebra, Combinatorics, Geometry and Number Theory
Title Transcendence in Algebra, Combinatorics, Geometry and Number Theory PDF eBook
Author Alin Bostan
Publisher Springer Nature
Total Pages 544
Release 2021-11-02
Genre Mathematics
ISBN 3030843041

Download Transcendence in Algebra, Combinatorics, Geometry and Number Theory Book in PDF, Epub and Kindle

This proceedings volume gathers together original articles and survey works that originate from presentations given at the conference Transient Transcendence in Transylvania, held in Brașov, Romania, from May 13th to 17th, 2019. The conference gathered international experts from various fields of mathematics and computer science, with diverse interests and viewpoints on transcendence. The covered topics are related to algebraic and transcendental aspects of special functions and special numbers arising in algebra, combinatorics, geometry and number theory. Besides contributions on key topics from invited speakers, this volume also brings selected papers from attendees.

Galois Theories of Linear Difference Equations: An Introduction

Galois Theories of Linear Difference Equations: An Introduction
Title Galois Theories of Linear Difference Equations: An Introduction PDF eBook
Author Charlotte Hardouin
Publisher American Mathematical Soc.
Total Pages 171
Release 2016-04-27
Genre Difference and functional equations -- Difference equations -- Linear equations
ISBN 1470426552

Download Galois Theories of Linear Difference Equations: An Introduction Book in PDF, Epub and Kindle

This book is a collection of three introductory tutorials coming out of three courses given at the CIMPA Research School “Galois Theory of Difference Equations” in Santa Marta, Columbia, July 23–August 1, 2012. The aim of these tutorials is to introduce the reader to three Galois theories of linear difference equations and their interrelations. Each of the three articles addresses a different galoisian aspect of linear difference equations. The authors motivate and give elementary examples of the basic ideas and techniques, providing the reader with an entry to current research. In addition each article contains an extensive bibliography that includes recent papers; the authors have provided pointers to these articles allowing the interested reader to explore further.

Differential Equations

Differential Equations
Title Differential Equations PDF eBook
Author Marcelo Viana
Publisher American Mathematical Society
Total Pages 536
Release 2021-12-30
Genre Mathematics
ISBN 147046540X

Download Differential Equations Book in PDF, Epub and Kindle

This graduate-level introduction to ordinary differential equations combines both qualitative and numerical analysis of solutions, in line with Poincaré's vision for the field over a century ago. Taking into account the remarkable development of dynamical systems since then, the authors present the core topics that every young mathematician of our time—pure and applied alike—ought to learn. The book features a dynamical perspective that drives the motivating questions, the style of exposition, and the arguments and proof techniques. The text is organized in six cycles. The first cycle deals with the foundational questions of existence and uniqueness of solutions. The second introduces the basic tools, both theoretical and practical, for treating concrete problems. The third cycle presents autonomous and non-autonomous linear theory. Lyapunov stability theory forms the fourth cycle. The fifth one deals with the local theory, including the Grobman–Hartman theorem and the stable manifold theorem. The last cycle discusses global issues in the broader setting of differential equations on manifolds, culminating in the Poincaré–Hopf index theorem. The book is appropriate for use in a course or for self-study. The reader is assumed to have a basic knowledge of general topology, linear algebra, and analysis at the undergraduate level. Each chapter ends with a computational experiment, a diverse list of exercises, and detailed historical, biographical, and bibliographic notes seeking to help the reader form a clearer view of how the ideas in this field unfolded over time.

A First Course in Sobolev Spaces

A First Course in Sobolev Spaces
Title A First Course in Sobolev Spaces PDF eBook
Author Giovanni Leoni
Publisher American Mathematical Society
Total Pages 759
Release 2024-04-17
Genre Mathematics
ISBN 1470477025

Download A First Course in Sobolev Spaces Book in PDF, Epub and Kindle

This book is about differentiation of functions. It is divided into two parts, which can be used as different textbooks, one for an advanced undergraduate course in functions of one variable and one for a graduate course on Sobolev functions. The first part develops the theory of monotone, absolutely continuous, and bounded variation functions of one variable and their relationship with Lebesgue–Stieltjes measures and Sobolev functions. It also studies decreasing rearrangement and curves. The second edition includes a chapter on functions mapping time into Banach spaces. The second part of the book studies functions of several variables. It begins with an overview of classical results such as Rademacher's and Stepanoff's differentiability theorems, Whitney's extension theorem, Brouwer's fixed point theorem, and the divergence theorem for Lipschitz domains. It then moves to distributions, Fourier transforms and tempered distributions. The remaining chapters are a treatise on Sobolev functions. The second edition focuses more on higher order derivatives and it includes the interpolation theorems of Gagliardo and Nirenberg. It studies embedding theorems, extension domains, chain rule, superposition, Poincaré's inequalities and traces. A major change compared to the first edition is the chapter on Besov spaces, which are now treated using interpolation theory.