Better coverage intervals for estimators from a complex sample survey

Better coverage intervals for estimators from a complex sample survey
Title Better coverage intervals for estimators from a complex sample survey PDF eBook
Author Phillip S. Kott
Publisher RTI Press
Total Pages 14
Release 2020-02-03
Genre Mathematics
ISBN

Download Better coverage intervals for estimators from a complex sample survey Book in PDF, Epub and Kindle

Coverage intervals for a parameter estimate computed using complex survey data are often constructed by assuming the parameter estimate has an asymptotically normal distribution and the measure of the estimator’s variance is roughly chi-squared. The size of the sample and the nature of the parameter being estimated render this conventional “Wald” methodology dubious in many applications. I developed a revised method of coverage-interval construction that “speeds up the asymptotics” by incorporating an estimated measure of skewness. I discuss how skewness-adjusted intervals can be computed for ratios, differences between domain means, and regression coefficients.

The degrees of freedom of a variance estimator in a probability sample

The degrees of freedom of a variance estimator in a probability sample
Title The degrees of freedom of a variance estimator in a probability sample PDF eBook
Author Phillip S. Kott
Publisher RTI Press
Total Pages 12
Release 2020-08-17
Genre Mathematics
ISBN

Download The degrees of freedom of a variance estimator in a probability sample Book in PDF, Epub and Kindle

Inferences from probability-sampling theory (more commonly called “design-based sampling theory”) often rely on the asymptotic normality of nearly unbiased estimators. When constructing a two-sided confidence interval for a mean, the ad hoc practice of determining the degrees of freedom of a probability-sampling variance estimator by subtracting the number of its variance strata from the number of variance primary sampling units (PSUs) can be justified by making usually untenable assumptions about the PSUs. We will investigate the effectiveness of this conventional and an alternative method for determining the effective degrees of freedom of a probability-sampling variance estimator under a stratified cluster sample.

Replication, an Approach to the Analysis of Data from Complex Surveys

Replication, an Approach to the Analysis of Data from Complex Surveys
Title Replication, an Approach to the Analysis of Data from Complex Surveys PDF eBook
Author Philip J. McCarthy
Publisher
Total Pages 58
Release 1966
Genre Health surveys
ISBN

Download Replication, an Approach to the Analysis of Data from Complex Surveys Book in PDF, Epub and Kindle

Sampling Theory and Practice

Sampling Theory and Practice
Title Sampling Theory and Practice PDF eBook
Author Changbao Wu
Publisher Springer Nature
Total Pages 371
Release 2020-05-15
Genre Social Science
ISBN 3030442462

Download Sampling Theory and Practice Book in PDF, Epub and Kindle

The three parts of this book on survey methodology combine an introduction to basic sampling theory, engaging presentation of topics that reflect current research trends, and informed discussion of the problems commonly encountered in survey practice. These related aspects of survey methodology rarely appear together under a single connected roof, making this book a unique combination of materials for teaching, research and practice in survey sampling. Basic knowledge of probability theory and statistical inference is assumed, but no prior exposure to survey sampling is required. The first part focuses on the design-based approach to finite population sampling. It contains a rigorous coverage of basic sampling designs, related estimation theory, model-based prediction approach, and model-assisted estimation methods. The second part stems from original research conducted by the authors as well as important methodological advances in the field during the past three decades. Topics include calibration weighting methods, regression analysis and survey weighted estimating equation (EE) theory, longitudinal surveys and generalized estimating equations (GEE) analysis, variance estimation and resampling techniques, empirical likelihood methods for complex surveys, handling missing data and non-response, and Bayesian inference for survey data. The third part provides guidance and tools on practical aspects of large-scale surveys, such as training and quality control, frame construction, choices of survey designs, strategies for reducing non-response, and weight calculation. These procedures are illustrated through real-world surveys. Several specialized topics are also discussed in detail, including household surveys, telephone and web surveys, natural resource inventory surveys, adaptive and network surveys, dual-frame and multiple frame surveys, and analysis of non-probability survey samples. This book is a self-contained introduction to survey sampling that provides a strong theoretical base with coverage of current research trends and pragmatic guidance and tools for conducting surveys.

Complex Surveys

Complex Surveys
Title Complex Surveys PDF eBook
Author Thomas Lumley
Publisher John Wiley & Sons
Total Pages 329
Release 2011-09-20
Genre Mathematics
ISBN 111821093X

Download Complex Surveys Book in PDF, Epub and Kindle

A complete guide to carrying out complex survey analysis using R As survey analysis continues to serve as a core component of sociological research, researchers are increasingly relying upon data gathered from complex surveys to carry out traditional analyses. Complex Surveys is a practical guide to the analysis of this kind of data using R, the freely available and downloadable statistical programming language. As creator of the specific survey package for R, the author provides the ultimate presentation of how to successfully use the software for analyzing data from complex surveys while also utilizing the most current data from health and social sciences studies to demonstrate the application of survey research methods in these fields. The book begins with coverage of basic tools and topics within survey analysis such as simple and stratified sampling, cluster sampling, linear regression, and categorical data regression. Subsequent chapters delve into more technical aspects of complex survey analysis, including post-stratification, two-phase sampling, missing data, and causal inference. Throughout the book, an emphasis is placed on graphics, regression modeling, and two-phase designs. In addition, the author supplies a unique discussion of epidemiological two-phase designs as well as probability-weighting for causal inference. All of the book's examples and figures are generated using R, and a related Web site provides the R code that allows readers to reproduce the presented content. Each chapter concludes with exercises that vary in level of complexity, and detailed appendices outline additional mathematical and computational descriptions to assist readers with comparing results from various software systems. Complex Surveys is an excellent book for courses on sampling and complex surveys at the upper-undergraduate and graduate levels. It is also a practical reference guide for applied statisticians and practitioners in the social and health sciences who use statistics in their everyday work.

Applied Survey Data Analysis

Applied Survey Data Analysis
Title Applied Survey Data Analysis PDF eBook
Author Steven G. Heeringa
Publisher CRC Press
Total Pages 568
Release 2017-07-12
Genre Mathematics
ISBN 1498761615

Download Applied Survey Data Analysis Book in PDF, Epub and Kindle

Highly recommended by the Journal of Official Statistics, The American Statistician, and other journals, Applied Survey Data Analysis, Second Edition provides an up-to-date overview of state-of-the-art approaches to the analysis of complex sample survey data. Building on the wealth of material on practical approaches to descriptive analysis and regression modeling from the first edition, this second edition expands the topics covered and presents more step-by-step examples of modern approaches to the analysis of survey data using the newest statistical software. Designed for readers working in a wide array of disciplines who use survey data in their work, this book continues to provide a useful framework for integrating more in-depth studies of the theory and methods of survey data analysis. An example-driven guide to the applied statistical analysis and interpretation of survey data, the second edition contains many new examples and practical exercises based on recent versions of real-world survey data sets. Although the authors continue to use Stata for most examples in the text, they also continue to offer SAS, SPSS, SUDAAN, R, WesVar, IVEware, and Mplus software code for replicating the examples on the book’s updated website.

On Estimating Variances for Gini Coefficients with Complex Surveys

On Estimating Variances for Gini Coefficients with Complex Surveys
Title On Estimating Variances for Gini Coefficients with Complex Surveys PDF eBook
Author Ahmed Hoque
Publisher
Total Pages
Release 2016
Genre
ISBN

Download On Estimating Variances for Gini Coefficients with Complex Surveys Book in PDF, Epub and Kindle

Obtaining variances for the plug-in estimator of the Gini coefficient for inequality has preoccupied researchers for decades with the proposed analytic formulae often being regarded as being too cumbersome to apply, as well as usually based on the assumption of an iid structure. We examine several variance estimation techniques for a Gini coefficient estimator obtained from a complex survey, a sampling design often used to obtain sample data in inequality studies. In the first part of the dissertation, we prove that Bhattacharya's (2007) asymptotic variance estimator when data arise from a complex survey is equivalent to an asymptotic variance estimator derived by Binder and Kovačević (1995) nearly twenty years earlier. In addition, to aid applied researchers, we also show how auxiliary regressions can be used to generate the plug-in Gini estimator and its asymptotic variance, irrespective of the sampling design. In the second part of the dissertation, using Monte Carlo (MC) simulations with 36 data generating processes under the beta, lognormal, chi-square, and the Pareto distributional assumptions with sample data obtained under various complex survey designs, we explore two finite sample properties of the Gini coefficient estimator: bias of the estimator and empirical coverage probabilities of interval estimators for the Gini coefficient. We find high sensitivity to the number of strata and the underlying distribution of the population data. We compare the performance of two standard normal (SN) approximation interval estimators using the asymptotic variance estimators of Binder and Kovačević (1995) and Bhattacharya (2007), another SN approximation interval estimator using a traditional bootstrap variance estimator, and a standard MC bootstrap percentile interval estimator under a complex survey design. With few exceptions, namely with small samples and/or highly skewed distributions of the underlying population data where the bootstrap methods work relatively better, the SN approximation interval estimators using asymptotic variances perform quite well.Finally, health data on the body mass index and hemoglobin levels for Bangladeshi women and children, respectively, are used as illustrations. Inequality analysis of these two important indicators provides a better understanding about the health status of women and children. Our empirical results show that statistical inferences regarding inequality in these well-being variables, measured by the Gini coefficients, based on Binder and Kovačević's and Bhattacharya's asymptotic variance estimators, give equivalent outcomes. Although the bootstrap approach often generates slightly smaller variance estimates in small samples, the hypotheses test results or widths of interval estimates using this method are practically similar to those using the asymptotic variance estimators. Our results are useful, both theoretically and practically, as the asymptotic variance estimators are simpler and require less time to calculate compared to those generated by bootstrap methods, as often previously advocated by researchers. These findings suggest that applied researchers can often be comfortable in undertaking inferences about the inequality of a well-being variable using the Gini coefficient employing asymptotic variance estimators that are not difficult to calculate, irrespective of whether the sample data are obtained under a complex survey or a simple random sample design.