Uncertainty Analysis of Experimental Data with R

Uncertainty Analysis of Experimental Data with R
Title Uncertainty Analysis of Experimental Data with R PDF eBook
Author Benjamin David Shaw
Publisher CRC Press
Total Pages 201
Release 2017-07-06
Genre Mathematics
ISBN 1315342596

Download Uncertainty Analysis of Experimental Data with R Book in PDF, Epub and Kindle

"This would be an excellent book for undergraduate, graduate and beyond....The style of writing is easy to read and the author does a good job of adding humor in places. The integration of basic programming in R with the data that is collected for any experiment provides a powerful platform for analysis of data.... having the understanding of data analysis that this book offers will really help researchers examine their data and consider its value from multiple perspectives – and this applies to people who have small AND large data sets alike! This book also helps people use a free and basic software system for processing and plotting simple to complex functions." Michelle Pantoya, Texas Tech University Measurements of quantities that vary in a continuous fashion, e.g., the pressure of a gas, cannot be measured exactly and there will always be some uncertainty with these measured values, so it is vital for researchers to be able to quantify this data. Uncertainty Analysis of Experimental Data with R covers methods for evaluation of uncertainties in experimental data, as well as predictions made using these data, with implementation in R. The books discusses both basic and more complex methods including linear regression, nonlinear regression, and kernel smoothing curve fits, as well as Taylor Series, Monte Carlo and Bayesian approaches. Features: 1. Extensive use of modern open source software (R). 2. Many code examples are provided. 3. The uncertainty analyses conform to accepted professional standards (ASME). 4. The book is self-contained and includes all necessary material including chapters on statistics and programming in R. Benjamin D. Shaw is a professor in the Mechanical and Aerospace Engineering Department at the University of California, Davis. His research interests are primarily in experimental and theoretical aspects of combustion. Along with other courses, he has taught undergraduate and graduate courses on engineering experimentation and uncertainty analysis. He has published widely in archival journals and became an ASME Fellow in 2003.

Uncertainty Analysis of Experimental Data with R

Uncertainty Analysis of Experimental Data with R
Title Uncertainty Analysis of Experimental Data with R PDF eBook
Author Benjamin D. Shaw
Publisher
Total Pages 195
Release 2017
Genre Probabilities
ISBN 9781315366715

Download Uncertainty Analysis of Experimental Data with R Book in PDF, Epub and Kindle

""This would be an excellent book for undergraduate, graduate and beyond ... The style of writing is easy to read and the author does a good job of adding humor in places. The integration of basic programming in R with the data that is collected for any experiment provides a powerful platform for analysis of data ... having the understanding of data analysis that this book offers will really help researchers examine their data and consider its value from multiple perspectives - and this applies to people who have small AND large data sets alike! This book also helps people use a free and basic software system for processing and plotting simple to complex functions." Michelle Pantoya, Texas Tech UniversityMeasurements of quantities that vary in a continuous fashion, e.g., the pressure of a gas, cannot be measured exactly and there will always be some uncertainty with these measured values, so it is vital for researchers to be able to quantify this data. Uncertainty Analysis of Experimental Data with R covers methods for evaluation of uncertainties in experimental data, as well as predictions made using these data, with implementation in R. The books discusses both basic and more complex methods including linear regression, nonlinear regression, and kernel smoothing curve fits, as well as Taylor Series, Monte Carlo and Bayesian approaches. Features:1. Extensive use of modern open source software (R).2. Many code examples are provided.3. The uncertainty analyses conform to accepted professional standards (ASME).4. The book is self-contained and includes all necessary material including chapters on statistics and programming in R. Benjamin D. Shaw is a professor in the Mechanical and Aerospace Engineering Department at the University of California, Davis. His research interests are primarily in experimental and theoretical aspects of combustion. Along with other courses, he has taught undergraduate and graduate courses on engineering experimentation and uncertainty analysis. He has published widely in archival journals and became an ASME Fellow in 2003.?"--Provided by publisher.

Uncertainty Analysis of Experimental Data with R

Uncertainty Analysis of Experimental Data with R
Title Uncertainty Analysis of Experimental Data with R PDF eBook
Author Benjamin David Shaw
Publisher CRC Press
Total Pages 205
Release 2017-07-06
Genre Mathematics
ISBN 1498797334

Download Uncertainty Analysis of Experimental Data with R Book in PDF, Epub and Kindle

"This would be an excellent book for undergraduate, graduate and beyond....The style of writing is easy to read and the author does a good job of adding humor in places. The integration of basic programming in R with the data that is collected for any experiment provides a powerful platform for analysis of data.... having the understanding of data analysis that this book offers will really help researchers examine their data and consider its value from multiple perspectives – and this applies to people who have small AND large data sets alike! This book also helps people use a free and basic software system for processing and plotting simple to complex functions." Michelle Pantoya, Texas Tech University Measurements of quantities that vary in a continuous fashion, e.g., the pressure of a gas, cannot be measured exactly and there will always be some uncertainty with these measured values, so it is vital for researchers to be able to quantify this data. Uncertainty Analysis of Experimental Data with R covers methods for evaluation of uncertainties in experimental data, as well as predictions made using these data, with implementation in R. The books discusses both basic and more complex methods including linear regression, nonlinear regression, and kernel smoothing curve fits, as well as Taylor Series, Monte Carlo and Bayesian approaches. Features: 1. Extensive use of modern open source software (R). 2. Many code examples are provided. 3. The uncertainty analyses conform to accepted professional standards (ASME). 4. The book is self-contained and includes all necessary material including chapters on statistics and programming in R. Benjamin D. Shaw is a professor in the Mechanical and Aerospace Engineering Department at the University of California, Davis. His research interests are primarily in experimental and theoretical aspects of combustion. Along with other courses, he has taught undergraduate and graduate courses on engineering experimentation and uncertainty analysis. He has published widely in archival journals and became an ASME Fellow in 2003.

An Introduction to Error Analysis

An Introduction to Error Analysis
Title An Introduction to Error Analysis PDF eBook
Author John Robert Taylor
Publisher Univ Science Books
Total Pages 327
Release 1997-01-01
Genre Mathematics
ISBN 9780935702422

Download An Introduction to Error Analysis Book in PDF, Epub and Kindle

Problems after each chapter

Data Reduction and Error Analysis for the Physical Sciences

Data Reduction and Error Analysis for the Physical Sciences
Title Data Reduction and Error Analysis for the Physical Sciences PDF eBook
Author Philip R. Bevington
Publisher McGraw-Hill Science, Engineering & Mathematics
Total Pages 362
Release 1992
Genre Mathematics
ISBN

Download Data Reduction and Error Analysis for the Physical Sciences Book in PDF, Epub and Kindle

This book is designed as a laboratory companion, student textbook or reference book for professional scientists. The text is for use in one-term numerical analysis, data and error analysis, or computer methods courses, or for laboratory use. It is for the sophomore-junior level, and calculus is a prerequisite. The new edition includes applications for PC use.

Experimental Methods for Science and Engineering Students

Experimental Methods for Science and Engineering Students
Title Experimental Methods for Science and Engineering Students PDF eBook
Author Les Kirkup
Publisher Cambridge University Press
Total Pages 239
Release 2019-09-05
Genre Science
ISBN 1108418465

Download Experimental Methods for Science and Engineering Students Book in PDF, Epub and Kindle

An overview of experimental methods providing practical advice to students seeking guidance with their experimental work.

Uncertainty Analysis for Engineers and Scientists

Uncertainty Analysis for Engineers and Scientists
Title Uncertainty Analysis for Engineers and Scientists PDF eBook
Author Faith A. Morrison
Publisher Cambridge University Press
Total Pages 389
Release 2021-01-07
Genre Computers
ISBN 1108478352

Download Uncertainty Analysis for Engineers and Scientists Book in PDF, Epub and Kindle

Build the skills for determining appropriate error limits for quantities that matter with this essential toolkit. Understand how to handle a complete project and how uncertainty enters into various steps. Provides a systematic, worksheet-based process to determine error limits on measured quantities, and all likely sources of uncertainty are explored, measured or estimated. Features instructions on how to carry out error analysis using Excel and MATLAB®, making previously tedious calculations easy. Whether you are new to the sciences or an experienced engineer, this useful resource provides a practical approach to performing error analysis. Suitable as a text for a junior or senior level laboratory course in aerospace, chemical and mechanical engineering, and for professionals.