Surveys on Recent Developments in Algebraic Geometry

Surveys on Recent Developments in Algebraic Geometry
Title Surveys on Recent Developments in Algebraic Geometry PDF eBook
Author Izzet Coskun
Publisher
Total Pages 386
Release 2017
Genre
ISBN 9781470441210

Download Surveys on Recent Developments in Algebraic Geometry Book in PDF, Epub and Kindle

The algebraic geometry community has a tradition of running a summer research institute every ten years. During these influential meetings a large number of mathematicians from around the world convene to overview the developments of the past decade and to outline the most fundamental and far-reaching problems for the next. The meeting is preceded by a Bootcamp aimed at graduate students and young researchers. This volume collects ten surveys that grew out of the Bootcamp, held July 6-10, 2015, at University of Utah, Salt Lake City, Utah. These papers give succinct and thorough introductions to some of the most important and exciting developments in algebraic geometry in the last decade. Included are descriptions of the striking advances in the Minimal Model Program, moduli spaces, derived categories, Bridgeland stability, motivic homotopy theory, methods in characteristic p and Hodge theory. Surveys contain many examples, exercises and open problems, which will make this volume an invaluable and enduring resource for researchers looking for new directions

Surveys on Recent Developments in Algebraic Geometry

Surveys on Recent Developments in Algebraic Geometry
Title Surveys on Recent Developments in Algebraic Geometry PDF eBook
Author Izzet Coskun
Publisher American Mathematical Soc.
Total Pages 370
Release 2017-07-12
Genre $K$-theory -- Higher algebraic $K$-theory -- $Q$- and plus-constructions
ISBN 1470435578

Download Surveys on Recent Developments in Algebraic Geometry Book in PDF, Epub and Kindle

The algebraic geometry community has a tradition of running a summer research institute every ten years. During these influential meetings a large number of mathematicians from around the world convene to overview the developments of the past decade and to outline the most fundamental and far-reaching problems for the next. The meeting is preceded by a Bootcamp aimed at graduate students and young researchers. This volume collects ten surveys that grew out of the Bootcamp, held July 6–10, 2015, at University of Utah, Salt Lake City, Utah. These papers give succinct and thorough introductions to some of the most important and exciting developments in algebraic geometry in the last decade. Included are descriptions of the striking advances in the Minimal Model Program, moduli spaces, derived categories, Bridgeland stability, motivic homotopy theory, methods in characteristic and Hodge theory. Surveys contain many examples, exercises and open problems, which will make this volume an invaluable and enduring resource for researchers looking for new directions.

New Trends in Algebraic Geometry

New Trends in Algebraic Geometry
Title New Trends in Algebraic Geometry PDF eBook
Author Klaus Hulek
Publisher Cambridge University Press
Total Pages 500
Release 1999-05-13
Genre Mathematics
ISBN 9780521646598

Download New Trends in Algebraic Geometry Book in PDF, Epub and Kindle

This book is the outcome of the 1996 Warwick Algebraic Geometry EuroConference, containing 17 survey and research articles selected from the most outstanding contemporary research topics in algebraic geometry. Several of the articles are expository: among these a beautiful short exposition by Paranjape of the new and very simple approach to the resolution of singularities; a detailed essay by Ito and Nakamura on the ubiquitous A,D,E classification, centred around simple surface singularities; a discussion by Morrison of the new special Lagrangian approach to giving geometric foundations to mirror symmetry; and two deep, informative surveys by Siebert and Behrend on Gromow-Witten invariants treating them from the point of view of algebraic and symplectic geometry. The remaining articles cover a wide cross-section of the most significant research topics in algebraic geometry. This includes Gromow-Witten invariants, Hodge theory, Calabi-Yau 3-folds, mirror symmetry and classification of varieties.

Current Topics in Complex Algebraic Geometry

Current Topics in Complex Algebraic Geometry
Title Current Topics in Complex Algebraic Geometry PDF eBook
Author Charles Herbert Clemens
Publisher Cambridge University Press
Total Pages 180
Release 1995
Genre Mathematics
ISBN 9780521562447

Download Current Topics in Complex Algebraic Geometry Book in PDF, Epub and Kindle

The 1992/93 academic year at the Mathematical Sciences Research Institute was devoted to complex algebraic geometry. This volume collects survey articles that arose from this event, which took place at a time when algebraic geometry was undergoing a major change. The editors of the volume, Herbert Clemens and János Kollár, chaired the organizing committee. This book gives a good idea of the intellectual content of the special year and of the workshops. Its articles represent very well the change of direction and branching out witnessed by algebraic geometry in the last few years.

Geometry of Moduli

Geometry of Moduli
Title Geometry of Moduli PDF eBook
Author Jan Arthur Christophersen
Publisher Springer
Total Pages 326
Release 2018-11-24
Genre Mathematics
ISBN 3319948814

Download Geometry of Moduli Book in PDF, Epub and Kindle

The proceedings from the Abel Symposium on Geometry of Moduli, held at Svinøya Rorbuer, Svolvær in Lofoten, in August 2017, present both survey and research articles on the recent surge of developments in understanding moduli problems in algebraic geometry. Written by many of the main contributors to this evolving subject, the book provides a comprehensive collection of new methods and the various directions in which moduli theory is advancing. These include the geometry of moduli spaces, non-reductive geometric invariant theory, birational geometry, enumerative geometry, hyper-kähler geometry, syzygies of curves and Brill-Noether theory and stability conditions. Moduli theory is ubiquitous in algebraic geometry, and this is reflected in the list of moduli spaces addressed in this volume: sheaves on varieties, symmetric tensors, abelian differentials, (log) Calabi-Yau varieties, points on schemes, rational varieties, curves, abelian varieties and hyper-Kähler manifolds.

New Trends in Intuitive Geometry

New Trends in Intuitive Geometry
Title New Trends in Intuitive Geometry PDF eBook
Author Gergely Ambrus
Publisher Springer
Total Pages 458
Release 2018-11-03
Genre Mathematics
ISBN 3662574136

Download New Trends in Intuitive Geometry Book in PDF, Epub and Kindle

This volume contains 17 surveys that cover many recent developments in Discrete Geometry and related fields. Besides presenting the state-of-the-art of classical research subjects like packing and covering, it also offers an introduction to new topological, algebraic and computational methods in this very active research field. The readers will find a variety of modern topics and many fascinating open problems that may serve as starting points for research.

A Study in Derived Algebraic Geometry

A Study in Derived Algebraic Geometry
Title A Study in Derived Algebraic Geometry PDF eBook
Author Dennis Gaitsgory
Publisher American Mathematical Society
Total Pages 533
Release 2019-12-31
Genre Mathematics
ISBN 1470452847

Download A Study in Derived Algebraic Geometry Book in PDF, Epub and Kindle

Derived algebraic geometry is a far-reaching generalization of algebraic geometry. It has found numerous applications in various parts of mathematics, most prominently in representation theory. This volume develops the theory of ind-coherent sheaves in the context of derived algebraic geometry. Ind-coherent sheaves are a “renormalization” of quasi-coherent sheaves and provide a natural setting for Grothendieck-Serre duality as well as geometric incarnations of numerous categories of interest in representation theory. This volume consists of three parts and an appendix. The first part is a survey of homotopical algebra in the setting of $infty$-categories and the basics of derived algebraic geometry. The second part builds the theory of ind-coherent sheaves as a functor out of the category of correspondences and studies the relationship between ind-coherent and quasi-coherent sheaves. The third part sets up the general machinery of the $mathrm{(}infty, 2mathrm{)}$-category of correspondences needed for the second part. The category of correspondences, via the theory developed in the third part, provides a general framework for Grothendieck's six-functor formalism. The appendix provides the necessary background on $mathrm{(}infty, 2mathrm{)}$-categories needed for the third part.