Semiconductor Physics and Devices

Semiconductor Physics and Devices
Title Semiconductor Physics and Devices PDF eBook
Author Donald A. Neamen
Publisher
Total Pages 746
Release 2003
Genre Semiconductores
ISBN 9780071198622

Download Semiconductor Physics and Devices Book in PDF, Epub and Kindle

This text aims to provide the fundamentals necessary to understand semiconductor device characteristics, operations and limitations. Quantum mechanics and quantum theory are explored, and this background helps give students a deeper understanding of the essentials of physics and semiconductors.

Physics of Semiconductor Devices

Physics of Semiconductor Devices
Title Physics of Semiconductor Devices PDF eBook
Author Simon M. Sze
Publisher John Wiley & Sons
Total Pages 828
Release 2006-12-13
Genre Technology & Engineering
ISBN 0470068302

Download Physics of Semiconductor Devices Book in PDF, Epub and Kindle

The Third Edition of the standard textbook and reference in the field of semiconductor devices This classic book has set the standard for advanced study and reference in the semiconductor device field. Now completely updated and reorganized to reflect the tremendous advances in device concepts and performance, this Third Edition remains the most detailed and exhaustive single source of information on the most important semiconductor devices. It gives readers immediate access to detailed descriptions of the underlying physics and performance characteristics of all major bipolar, field-effect, microwave, photonic, and sensor devices. Designed for graduate textbook adoptions and reference needs, this new edition includes: A complete update of the latest developments New devices such as three-dimensional MOSFETs, MODFETs, resonant-tunneling diodes, semiconductor sensors, quantum-cascade lasers, single-electron transistors, real-space transfer devices, and more Materials completely reorganized Problem sets at the end of each chapter All figures reproduced at the highest quality Physics of Semiconductor Devices, Third Edition offers engineers, research scientists, faculty, and students a practical basis for understanding the most important devices in use today and for evaluating future device performance and limitations. A Solutions Manual is available from the editorial department.

Physics of Semiconductor Devices

Physics of Semiconductor Devices
Title Physics of Semiconductor Devices PDF eBook
Author J.-P. Colinge
Publisher Springer Science & Business Media
Total Pages 442
Release 2007-05-08
Genre Technology & Engineering
ISBN 0306476223

Download Physics of Semiconductor Devices Book in PDF, Epub and Kindle

Physics of Semiconductor Devices covers both basic classic topics such as energy band theory and the gradual-channel model of the MOSFET as well as advanced concepts and devices such as MOSFET short-channel effects, low-dimensional devices and single-electron transistors. Concepts are introduced to the reader in a simple way, often using comparisons to everyday-life experiences such as simple fluid mechanics. They are then explained in depth and mathematical developments are fully described. Physics of Semiconductor Devices contains a list of problems that can be used as homework assignments or can be solved in class to exemplify the theory. Many of these problems make use of Matlab and are aimed at illustrating theoretical concepts in a graphical manner.

Physics of Semiconductor Devices

Physics of Semiconductor Devices
Title Physics of Semiconductor Devices PDF eBook
Author Simon M. Sze
Publisher John Wiley & Sons
Total Pages 944
Release 2021-03-03
Genre Technology & Engineering
ISBN 1119429110

Download Physics of Semiconductor Devices Book in PDF, Epub and Kindle

The new edition of the most detailed and comprehensive single-volume reference on major semiconductor devices The Fourth Edition of Physics of Semiconductor Devices remains the standard reference work on the fundamental physics and operational characteristics of all major bipolar, unipolar, special microwave, and optoelectronic devices. This fully updated and expanded edition includes approximately 1,000 references to original research papers and review articles, more than 650 high-quality technical illustrations, and over two dozen tables of material parameters. Divided into five parts, the text first provides a summary of semiconductor properties, covering energy band, carrier concentration, and transport properties. The second part surveys the basic building blocks of semiconductor devices, including p-n junctions, metal-semiconductor contacts, and metal-insulator-semiconductor (MIS) capacitors. Part III examines bipolar transistors, MOSFETs (MOS field-effect transistors), and other field-effect transistors such as JFETs (junction field-effect-transistors) and MESFETs (metal-semiconductor field-effect transistors). Part IV focuses on negative-resistance and power devices. The book concludes with coverage of photonic devices and sensors, including light-emitting diodes (LEDs), solar cells, and various photodetectors and semiconductor sensors. This classic volume, the standard textbook and reference in the field of semiconductor devices: Provides the practical foundation necessary for understanding the devices currently in use and evaluating the performance and limitations of future devices Offers completely updated and revised information that reflects advances in device concepts, performance, and application Features discussions of topics of contemporary interest, such as applications of photonic devices that convert optical energy to electric energy Includes numerous problem sets, real-world examples, tables, figures, and illustrations; several useful appendices; and a detailed solutions manual for Instructor's only Explores new work on leading-edge technologies such as MODFETs, resonant-tunneling diodes, quantum-cascade lasers, single-electron transistors, real-space-transfer devices, and MOS-controlled thyristors Physics of Semiconductor Devices, Fourth Edition is an indispensable resource for design engineers, research scientists, industrial and electronics engineering managers, and graduate students in the field.

Modern Semiconductor Physics and Device Applications

Modern Semiconductor Physics and Device Applications
Title Modern Semiconductor Physics and Device Applications PDF eBook
Author Vitalii K Dugaev
Publisher CRC Press
Total Pages 397
Release 2021-11-15
Genre Science
ISBN 1000462293

Download Modern Semiconductor Physics and Device Applications Book in PDF, Epub and Kindle

This textbook provides a theoretical background for contemporary trends in solid-state theory and semiconductor device physics. It discusses advanced methods of quantum mechanics and field theory and is therefore primarily intended for graduate students in theoretical and experimental physics who have already studied electrodynamics, statistical physics, and quantum mechanics. It also relates solid-state physics fundamentals to semiconductor device applications and includes auxiliary results from mathematics and quantum mechanics, making the book useful also for graduate students in electrical engineering and material science. Key Features: Explores concepts common in textbooks on semiconductors, in addition to topics not included in similar books currently available on the market, such as the topology of Hilbert space in crystals Contains the latest research and developments in the field Written in an accessible yet rigorous manner

Semiconductor Devices

Semiconductor Devices
Title Semiconductor Devices PDF eBook
Author Jasprit Singh
Publisher John Wiley & Sons
Total Pages 583
Release 2000-08-03
Genre Technology & Engineering
ISBN 047136245X

Download Semiconductor Devices Book in PDF, Epub and Kindle

From physical process to practical applications - Singh makes the complexities of modern semiconductor devices clear! The semiconductor devices that are driving today's information, technologies may seem remarkably complex, but they don't have to be impossible to understand. Filled with figures, flowcharts, and solved examples, Jasprit Singh's Semiconductor Devices provides an accessible, well-balanced introduction to semiconductor physics and its application to modern devices. Beginning with the physical process behind semiconductor devices, Singh clearly explains difficult topics, including bandstructure, effective masses, holes, doping, carrier transport, and lifetimes. Following these physical fundamentals, you'll explore the operation of important semiconductor devices, such as diodes, transistors, light emitters, and detectors, along with issues relating to the optimization of device performance. Features Over 150 solved examples, integrated throughout the text, clarify difficult concepts. End-of-chapter summary tables and hundreds of figures reinforce the intricacies of modern semiconductor devices. Discussion of device optimization issues explains why you have to trade one performance against another in devices. Shows the relationship of physical parameters to SPICE parameters and its impact on circuit issues. Technology Roadmaps outline what's currently happening in the field and present a look at where device technology is headed in the future. A Bit of History sections, included in each chapter, explore the history of the concepts developed and provide a snapshot of the personalities involved and the challenges of the time.

Semiconductor Device Physics and Design

Semiconductor Device Physics and Design
Title Semiconductor Device Physics and Design PDF eBook
Author Umesh Mishra
Publisher Springer Science & Business Media
Total Pages 583
Release 2007-11-28
Genre Technology & Engineering
ISBN 1402064802

Download Semiconductor Device Physics and Design Book in PDF, Epub and Kindle

Semiconductor Device Physics and Design teaches readers how to approach device design from the point of view of someone who wants to improve devices and can see the opportunity and challenges. It begins with coverage of basic physics concepts, including the physics behind polar heterostructures and strained heterostructures. The book then details the important devices ranging from p-n diodes to bipolar and field effect devices. By relating device design to device performance and then relating device needs to system use the student can see how device design works in the real world.