Quantum Transport Theory

Quantum Transport Theory
Title Quantum Transport Theory PDF eBook
Author Jorgen Rammer
Publisher CRC Press
Total Pages 262
Release 2018-05-04
Genre Science
ISBN 0429982461

Download Quantum Transport Theory Book in PDF, Epub and Kindle

This book provides an introduction to transport theory, the kinetic equation approach and shows the utility of Feynman diagrams in non-equilibrium quantum statistical mechanics. It is helpful for a wider audience than students of condensed matter physics and physicists in general.

Theory of Quantum Transport at Nanoscale

Theory of Quantum Transport at Nanoscale
Title Theory of Quantum Transport at Nanoscale PDF eBook
Author Dmitry Ryndyk
Publisher Springer
Total Pages 251
Release 2015-12-08
Genre Science
ISBN 3319240889

Download Theory of Quantum Transport at Nanoscale Book in PDF, Epub and Kindle

This book is an introduction to a rapidly developing field of modern theoretical physics – the theory of quantum transport at nanoscale. The theoretical methods considered in the book are in the basis of our understanding of charge, spin and heat transport in nanostructures and nanostructured materials and are widely used in nanoelectronics, molecular electronics, spin-dependent electronics (spintronics) and bio-electronics. The book is based on lectures for graduate and post-graduate students at the University of Regensburg and the Technische Universität Dresden (TU Dresden). The first part is devoted to the basic concepts of quantum transport: Landauer-Büttiker method and matrix Green function formalism for coherent transport, Tunneling (Transfer) Hamiltonian and master equation methods for tunneling, Coulomb blockade, vibrons and polarons. The results in this part are obtained as possible without sophisticated techniques, such as nonequilibrium Green functions, which are considered in detail in the second part. A general introduction into the nonequilibrium Green function theory is given. The approach based on the equation-of-motion technique, as well as more sophisticated one based on the Dyson-Keldysh diagrammatic technique are presented. The main attention is paid to the theoretical methods able to describe the nonequilibrium (at finite voltage) electron transport through interacting nanosystems, specifically the correlation effects due to electron-electron and electron-vibron interactions.

Quantum Transport

Quantum Transport
Title Quantum Transport PDF eBook
Author Yuli V. Nazarov
Publisher Cambridge University Press
Total Pages 1
Release 2009-05-28
Genre Science
ISBN 1139478176

Download Quantum Transport Book in PDF, Epub and Kindle

Quantum transport is a diverse field, sometimes combining seemingly contradicting concepts - quantum and classical, conduction and insulating - within a single nanodevice. Quantum transport is an essential and challenging part of nanoscience, and understanding its concepts and methods is vital to the successful fabrication of devices at the nanoscale. This textbook is a comprehensive introduction to the rapidly developing field of quantum transport. The authors present the comprehensive theoretical background, and explore the groundbreaking experiments that laid the foundations of the field. Ideal for graduate students, each section contains control questions and exercises to check readers' understanding of the topics covered. Its broad scope and in-depth analysis of selected topics will appeal to researchers and professionals working in nanoscience.

Quantum Transport

Quantum Transport
Title Quantum Transport PDF eBook
Author Supriyo Datta
Publisher Cambridge University Press
Total Pages 434
Release 2005-06-16
Genre Technology & Engineering
ISBN 1139443240

Download Quantum Transport Book in PDF, Epub and Kindle

This book presents the conceptual framework underlying the atomistic theory of matter, emphasizing those aspects that relate to current flow. This includes some of the most advanced concepts of non-equilibrium quantum statistical mechanics. No prior acquaintance with quantum mechanics is assumed. Chapter 1 provides a description of quantum transport in elementary terms accessible to a beginner. The book then works its way from hydrogen to nanostructures, with extensive coverage of current flow. The final chapter summarizes the equations for quantum transport with illustrative examples showing how conductors evolve from the atomic to the ohmic regime as they get larger. Many numerical examples are used to provide concrete illustrations and the corresponding Matlab codes can be downloaded from the web. Videostreamed lectures, keyed to specific sections of the book, are also available through the web. This book is primarily aimed at senior and graduate students.

Scattering Matrix Approach to Non-stationary Quantum Transport

Scattering Matrix Approach to Non-stationary Quantum Transport
Title Scattering Matrix Approach to Non-stationary Quantum Transport PDF eBook
Author Michael V. Moskalets
Publisher World Scientific
Total Pages 297
Release 2012
Genre Science
ISBN 1848168349

Download Scattering Matrix Approach to Non-stationary Quantum Transport Book in PDF, Epub and Kindle

The aim of this book is to introduce the basic elements of the scattering matrix approach to transport phenomena in dynamical quantum systems of non-interacting electrons. This approach permits a physically clear and transparent description of transport processes in dynamical mesoscopic systems, promising basic elements of solid-state devices for quantum information processing. One of the key effects, the quantum pump effect, is considered in detail. In addition, the theory for the recently implemented new dynamical source ? injecting electrons with time delay much larger than an electron coherence time ? is offered. This theory provides a simple description of quantum circuits with such a single-particle source and shows in an unambiguous way that the tunability inherent to the dynamical systems (in contrast to the stationary ones) leads to a number of unexpected but fundamental effects.

Nonequilibrium Quantum Transport Physics In Nanosystems: Foundation Of Computational Nonequilibrium Physics In Nanoscience And Nanotechnology

Nonequilibrium Quantum Transport Physics In Nanosystems: Foundation Of Computational Nonequilibrium Physics In Nanoscience And Nanotechnology
Title Nonequilibrium Quantum Transport Physics In Nanosystems: Foundation Of Computational Nonequilibrium Physics In Nanoscience And Nanotechnology PDF eBook
Author Felix A Buot
Publisher World Scientific
Total Pages 838
Release 2009-08-05
Genre Technology & Engineering
ISBN 9814472972

Download Nonequilibrium Quantum Transport Physics In Nanosystems: Foundation Of Computational Nonequilibrium Physics In Nanoscience And Nanotechnology Book in PDF, Epub and Kindle

This book presents the first comprehensive treatment of discrete phase-space quantum mechanics and the lattice Weyl-Wigner formulation of energy band dynamics, by the originator of these theoretical techniques. The author's quantum superfield theoretical formulation of nonequilibrium quantum physics is given in real time, without the awkward use of artificial time contour employed in previous formulations. These two main quantum theoretical techniques combine to yield general (including quasiparticle-pairing dynamics) and exact quantum transport equations in phase-space, appropriate for nanodevices. The derivation of transport formulas in mesoscopic physics from the general quantum transport equations is also treated. Pioneering nanodevices are discussed in the light of the quantum-transport physics equations, and an in-depth treatment of the physics of resonant tunneling devices is given. Operator Hilbert-space methods and quantum tomography are discussed. Discrete phase-space quantum mechanics on finite fields is treated for completeness and by virtue of its relevance to quantum computing. The phenomenological treatment of evolution superoperator and measurements is given to help clarify the general quantum transport theory. Quantum computing and information theory is covered to demonstrate the foundational aspects of discrete quantum dynamics, particularly in deriving a complete set of multiparticle entangled basis states.

Theory of Electron Transport in Semiconductors

Theory of Electron Transport in Semiconductors
Title Theory of Electron Transport in Semiconductors PDF eBook
Author Carlo Jacoboni
Publisher Springer Science & Business Media
Total Pages 590
Release 2010-09-05
Genre Science
ISBN 3642105866

Download Theory of Electron Transport in Semiconductors Book in PDF, Epub and Kindle

This book originated out of a desire to provide students with an instrument which might lead them from knowledge of elementary classical and quantum physics to moderntheoreticaltechniques for the analysisof electrontransport in semiconductors. The book is basically a textbook for students of physics, material science, and electronics. Rather than a monograph on detailed advanced research in a speci?c area, it intends to introduce the reader to the fascinating ?eld of electron dynamics in semiconductors, a ?eld that, through its applications to electronics, greatly contributed to the transformationof all our lives in the second half of the twentieth century, and continues to provide surprises and new challenges. The ?eld is so extensive that it has been necessary to leave aside many subjects, while others could be dealt with only in terms of their basic principles. The book is divided into ?ve major parts. Part I moves from a survey of the fundamentals of classical and quantum physics to a brief review of basic semiconductor physics. Its purpose is to establish a common platform of language and symbols, and to make the entire treatment, as far as pos- ble, self-contained. Parts II and III, respectively, develop transport theory in bulk semiconductors in semiclassical and quantum frames. Part IV is devoted to semiconductor structures, including devices and mesoscopic coherent s- tems. Finally, Part V develops the basic theoretical tools of transport theory within the modern nonequilibrium Green-function formulation, starting from an introduction to second-quantization formalism.