Nanomagnetism and Spintronics

Nanomagnetism and Spintronics
Title Nanomagnetism and Spintronics PDF eBook
Author Teruya Shinjo
Publisher Elsevier
Total Pages 373
Release 2013-10-07
Genre Science
ISBN 0444632778

Download Nanomagnetism and Spintronics Book in PDF, Epub and Kindle

The concise and accessible chapters of Nanomagnetism and Spintronics, Second Edition, cover the most recent research in areas of spin-current generation, spin-calorimetric effect, voltage effects on magnetic properties, spin-injection phenomena, giant magnetoresistance (GMR), and tunnel magnetoresistance (TMR). Spintronics is a cutting-edge area in the field of magnetism that studies the interplay of magnetism and transport phenomena, demonstrating how electrons not only have charge but also spin. This second edition provides the background to understand this novel physical phenomenon and focuses on the most recent developments and research relating to spintronics. This exciting new edition is an essential resource for graduate students, researchers, and professionals in industry who want to understand the concepts of spintronics, and keep up with recent research, all in one volume. Provides a concise, thorough evaluation of current research Surveys the important findings up to 2012 Examines the future of devices and the importance of spin current

Nanomagnetism and Spintronics

Nanomagnetism and Spintronics
Title Nanomagnetism and Spintronics PDF eBook
Author Teruya Shinjo
Publisher Elsevier
Total Pages 324
Release 2009-06-29
Genre Science
ISBN 0080932169

Download Nanomagnetism and Spintronics Book in PDF, Epub and Kindle

Spintronics is a newly developing area in the field of magnetism, in which the interplay of magnetism and transport phenomena is studied experimentally and theoretically. This book introduces the recent progresses in the research relating to spintronics. Presents in-depth analysis of this fascinating and technologically important new branch of nanoscience Edited text with contributions from acknowledged leaders in the field This handbook and guide will appeal to students and researchers in the fields of electronic devices and materials

Nanomagnetism and Spintronics

Nanomagnetism and Spintronics
Title Nanomagnetism and Spintronics PDF eBook
Author Farzad Nasirpouri
Publisher World Scientific
Total Pages 401
Release 2011
Genre Science
ISBN 9814273058

Download Nanomagnetism and Spintronics Book in PDF, Epub and Kindle

Nanomagnetism and spintronics are two close subfields of nanoscience, explaining the effect of substantial magnetic properties of matter when the materials fabrication is realized at a comparable length size. Nanomagnetism deals with the magnetic phenomena specific to the structures having dimensions in the submicron range. The fact that the electronic transport properties of materials are dependent on the magnetic properties' artificial nanostructures, i.e., giant magnetoresistance (GMR) or tunneling magnetoresistance (TMR), has revolutionized spintronics science and technology. This book explains the concepts of nanomagnetism and spintronics by viewing the most recent research works from internationally distinguished research groups. Placing special emphasis on crucial fundamental and technical aspects of nanomagnetism and spintronics, it serves as a one-stop reference for universities offering postgraduate programs in nanotechnology or related disciplines. This unique book deals with all three stages required for conducting research in nanomagnetism and spintronics including fabrication, characterization and applications of nanomagnetic and spintronics materials, providing general concepts and an insightful overview of this subject for research students and scientists from different backgrounds investigating the multidisciplinary area of nanotechnology.

Nanomagnetism and Spintronics

Nanomagnetism and Spintronics
Title Nanomagnetism and Spintronics PDF eBook
Author Yoshishige Suzuki
Publisher Elsevier Inc. Chapters
Total Pages 91
Release 2013-10-07
Genre Science
ISBN 0128086777

Download Nanomagnetism and Spintronics Book in PDF, Epub and Kindle

Current and voltage applied to the magnetic nanopillars induce a spin injection and an accumulation of nonequilibrium charges in a nanosize magnetic cell and result a spin torque exerted on the magnetic moment. Using such torques, we may amplify a precession of magnetization and induct a magnetization switching. These phenomena provide new techniques to write information into tiny magnetic cells and to construct oscillators and rectifiers that are several tens of nanometers in size. In this chapter, spin injections, and current and voltage-induced spin torques in magnetic multilayers, which show giant magnetoresistance effect in current-perpendicular-to-plane (CPP-GMR) geometry, and magnetic tunneling junctions are described. Further, mechanisms of spin injection and voltage-induced magnetization switching and its high-speed observations are explained. Then, phenomena related to spin injection, namely, spin-transfer oscillation and the spin-torque diode effect, are described. Finally, applications related to the spin-injection technology are reviewed.

Nanomagnetism and Spintronics

Nanomagnetism and Spintronics
Title Nanomagnetism and Spintronics PDF eBook
Author Teruo Ono
Publisher Elsevier Inc. Chapters
Total Pages 50
Release 2013-10-07
Genre Science
ISBN 0128086785

Download Nanomagnetism and Spintronics Book in PDF, Epub and Kindle

Dynamical behavior of magnetic domain wall (DW) is one of the main issues in the field of spintronics. In this chapter, several experimental studies in DW dynamics in nanomagnetic systems are described. For the study of DW motion in nanoscale wires, samples with a trilayer structure, ferromagnetic/nonmagnetic/ferromagnetic, were prepared and the position of DW was estimated from electrical resistance measurements using giant magnetoresistance principle. The velocity of DW driven by an external field has been evaluated from the resistance change. On the other hand, current-driven DW motion in a single wire of ferromagnetic layer was studied by magnetic force microscopy (MFM). All-electrical control and local detection of multiple magnetic DWs are also shown. Magnetic vortex structures are realized in nanoscale ferromagnetic dot systems. The behavior of vortex core magnetization was observed by MFM. Recent topics such as the switching of vortex core driven by a high frequency AC are introduced. Furthermore, all-electrical operation of a magnetic vortex core memory cell is demonstrated.

Nanomagnetism and Spintronics

Nanomagnetism and Spintronics
Title Nanomagnetism and Spintronics PDF eBook
Author André Thiaville
Publisher Elsevier Inc. Chapters
Total Pages 69
Release 2013-10-07
Genre Science
ISBN 0128086807

Download Nanomagnetism and Spintronics Book in PDF, Epub and Kindle

Spin-transfer torque manifests itself in two main geometries, either submicrometer diameter pillars composed of magnetic multilayers, flooded by a current perpendicular to plane (CPP), or nanowires with current flowing in their plane (CIP). The first situation can be described rather well, from the magnetic point of view, in the framework of the macrospin model (see by Y. Suzuki). In the latter case, the typical situation is that of a magnetic domain wall under CIP current, with many internal degrees of freedom. In by H. Kohno and G. Tatara, a simplest model of the domain wall, called collective coordinates model, has been introduced to study this question. In this chapter, we will address the entire manifold of the degrees of freedom in the domain wall by micromagnetic numerical simulations, and apply this to the physics of CIP spin transfer in magnetic domain walls. We will consider soft magnetic materials only, where domain wall structures and dynamics are controlled by magnetostatics. This corresponds to the largest part of experiments that have been performed up to now, soft magnetic materials having generally lower coercive forces and domain wall propagation fields. The experimental counterpart to this chapter can be found in , by T. Ono and T. Shinjo. After briefly introducing micromagnetics and the typology of domain walls in samples shaped into nanostrips, we start by reviewing the field-driven dynamics in such samples. This situation was indeed considered first, historically, and led to the introduction of several useful concepts. Prominent among them are the separation between steady-state and precessional regimes, and the existence of a maximum velocity for a domain wall. The spin-transfer torque-induced domain wall dynamics will then be addressed, considering first the implementation of the CIP spin transfer torque in micromagnetics, with several components as introduced by theory. Comparison will be made to the field-driven case, with similarities and differences highlighted. In the nascent field of nanomagnetism and spintronics, micromagnetics can be considered to play the role of a translator. There are on one side experiments and on the other side theories about interaction between magnetization and spin-polarized electrical currents. Micromagnetics is a tool that translates the equations of the latter into quantitative predictions that can be compared to the former. Considering the present state of the subject of this book, with rapidly advancing experiments and theories, keeping in touch those two aspects of research is very important for its sound development. This is the objective of this chapter.

Principles of Nanomagnetism

Principles of Nanomagnetism
Title Principles of Nanomagnetism PDF eBook
Author Alberto P. GuimarĂ£es
Publisher Springer
Total Pages 335
Release 2017-07-10
Genre Science
ISBN 3319594095

Download Principles of Nanomagnetism Book in PDF, Epub and Kindle

The second edition of this book on nanomagnetism presents the basics and latest studies of low-dimensional magnetic nano-objects. It highlights the intriguing properties of nanomagnetic objects, such as thin films, nanoparticles, nanowires, nanotubes, nanodisks and nanorings as well as novel phenomena like spin currents. It also describes how nanomagnetism was an important factor in the rapid evolution of high-density magnetic recording and is developing into a decisive element of spintronics. Further, it presents a number of biomedical applications. With exercises and solutions, it serves as a graduate textbook.