Molecular Nanowires and Other Quantum Objects

Molecular Nanowires and Other Quantum Objects
Title Molecular Nanowires and Other Quantum Objects PDF eBook
Author Alexandre S. Alexandrov
Publisher Springer Science & Business Media
Total Pages 434
Release 2004-04-30
Genre Technology & Engineering
ISBN 1402020937

Download Molecular Nanowires and Other Quantum Objects Book in PDF, Epub and Kindle

There is a growing understanding that the progress of the conventional silicon technology will reach its physical, engineering and economic limits in near future. This fact, however, does not mean that progress in computing will slow down. What will take us beyond the silicon era are new nano-technologies that are being pursued in university and corporate laboratories around the world. In particular, molecular switching devices and systems that will self-assemble through molecular recognition are being designed and studied. Many labora tories are now testing new types of these and other reversible switches, as well as fabricating nanowires needed to connect circuit elements together. But there are still significant opportunities and demand for invention and discovery be fore nanoelectronics will become a reality. The actual mechanisms of transport through molecular quantum dots and nanowires are of the highest current ex perimental and theoretical interest. In particular, there is growing evidence that both electron-vibron interactions and electron-electron correlations are impor tant. Further progress requires worldwide efforts of trans-disciplinary teams of physicists, quantum chemists, material and computer scientists, and engineers.

Molecular Nanowires and Other Quantum Objects

Molecular Nanowires and Other Quantum Objects
Title Molecular Nanowires and Other Quantum Objects PDF eBook
Author A. S. Alexandrov
Publisher Springer
Total Pages 448
Release 2004-06-02
Genre Science
ISBN

Download Molecular Nanowires and Other Quantum Objects Book in PDF, Epub and Kindle

There is a growing understanding that the progress of the conventional silicon technology will reach its physical, engineering and economic limits in about a decade. What will take us beyond 2010 are new molecular and other nanotechnologies that require the efforts of trans-disciplinary teams of physicists, quantum chemists, material and computer scientists, and engineers. This volume represents a unique collection of interdisciplinary review and original papers by experts in molecular nanowires, carbon nanotubes, mesoscopic super- and semiconductors, and theorists in the field of strongly correlated electrons and phonons. Topics include molecular nanojunctions and electronics, mesoscale semiconductors and superconductors, carbon nanotubes, low dimensional conductors, polarons and strongly-correlated electrons in nanoobjects, quantum theory of nanoscale, and new techniques for making nano and mesoscopic sensors and detectors.

Quantum Transport in Nanostructures and Molecules

Quantum Transport in Nanostructures and Molecules
Title Quantum Transport in Nanostructures and Molecules PDF eBook
Author Colin John Lambert
Publisher
Total Pages
Release 2021
Genre SCIENCE
ISBN 9780750336383

Download Quantum Transport in Nanostructures and Molecules Book in PDF, Epub and Kindle

This reference text presents a conceptual framework for understanding room-temperature electron and phonon transport through molecules and other quantum objects. The flow of electricity through molecules is explained at the boundary of physics and chemistry, providing an authoritative introduction to molecular electronics for physicists, and quantum transport for chemists. Professor Lambert provides a pedagogical account of the fundamental concepts needed to understand quantum transport and thermoelectricity in molecular-scale and nanoscale structures. The material provides researchers and advanced students with an understanding of how quantum transport relates to other areas of materials modelling, condensed matter and computational chemistry. After reading the book, the reader will be familiar with the basic concepts of molecular-orbital theory and scattering theory, which underpin current theories of quantum transport.

Molecular Electronics

Molecular Electronics
Title Molecular Electronics PDF eBook
Author Juan Carlos Cuevas
Publisher World Scientific
Total Pages 724
Release 2010
Genre Science
ISBN 9814282596

Download Molecular Electronics Book in PDF, Epub and Kindle

1. The birth of molecular electronics. 1.1. Why molecular electronics?. 1.2. A brief history of molecular electronics. 1.3. Scope and structure of the book -- 2. Fabrication of metallic atomic-size contacts. 2.1. Introduction. 2.2. Techniques involving the scanning electron microscope (STM). 2.3. Methods using atomic force microscopes (AFM). 2.4. Contacts between macroscopic wires. 2.5. Transmission electron microscope. 2.6. Mechanically controllable break-junctions (MCBJ). 2.7. Electromigration technique. 2.8. Electrochemical methods. 2.9. Recent developments. 2.10. Electronic transport measurements. 2.11. Exercises -- 3. Contacting single molecules: Experimental techniques. 3.1. Introduction. 3.2. Molecules for molecular electronics. 3.3. Deposition of molecules. 3.4. Contacting single molecules. 3.5. Contacting molecular ensembles. 3.6. Exercises -- 4. The scattering approach to phase-coherent transport in nanocontacts. 4.1. Introduction. 4.2. From mesoscopic conductors to atomic-scale junctions. 4.3. Conductance is transmission : heuristic derivation of the Landauer formula. 4.4. Penetration of a potential barrier : tunnel effect. 4.5. The scattering matrix. 4.6. Multichannel Landauer formula. 4.7. Shot noise. 4.8. Thermal transport and thermoelectric phenomena. 4.9. Limitations of the scattering approach. 4.10. Exercises -- 5. Introduction to Green's function techniques for systems in equilibrium. 5.1. The Schrodinger and Heisenberg pictures. 5.2. Green's functions of a noninteracting electron system. 5.3. Application to tight-binding Hamiltonians. 5.4. Green's functions in time domain. 5.5. Exercises -- 6. Green's functions and Feynman diagrams. 6.1. The interaction picture. 6.2. The time-evolution operator. 6.3. Perturbative expansion of causal Green's functions. 6.4. Wick's theorem. 6.5. Feynman diagrams. 6.6. Feynman diagrams in energy space. 6.7. Electronic self-energy and Dyson's equation. 6.8. Self-consistent diagrammatic theory : the Hartree-Fock approximation. 6.9. The Anderson model and the Kondo effect. 6.10. Final remarks. 6.11. Exercises -- 7. Nonequilibrium Green's functions formalism. 7.1. The Keldysh formalism. 7.2. Diagrammatic expansion in the Keldysh formalism. 7.3. Basic relations and equations in the Keldysh formalism. 7.4. Application of Keldysh formalism to simple transport problems. 7.5. Exercises -- 8. Formulas of the electrical current : exploiting the Keldysh formalism. 8.1. Elastic current : microscopic derivation of the Landauer formula. 8.2. Current through an interacting atomic-scale junction. 8.3. Time-dependent transport in nanoscale junctions. 8.4. Exercises -- 9. Electronic structure I: Tight-binding approach. 9.1. Basics of the tight-binding approach. 9.2. The extended Huckel method. 9.3. Matrix elements in solid state approaches. 9.4. Slater-Koster two-center approximation. 9.5. Some illustrative examples. 9.6. The NRL tight-binding method. 9.7. The tight-binding approach in molecular electronics. 9.8. Exercises -- 10. Electronic structure II : density functional theory. 10.1. Elementary quantum mechanics. 10.2. Early density functional theories. 10.3. The Hohenberg-Kohn theorems. 10.4. The Kohn-Sham approach. 10.5. The exchange-correlation functionals. 10.6. The basic machinery of DFT. 10.7. DFT performance. 10.8. DFT in molecular electronics. 10.9. Exercises -- 11. The conductance of a single atom. 11.1. Landauer approach to conductance: brief reminder. 11.2. Conductance of atomic-scale contacts. 11.3. Conductance histograms. 11.4. Determining the conduction channels. 11.5. The chemical nature of the conduction channels of oneatom contacts. 11.6. Some further issues. 11.7. Conductance fluctuations. 11.8. Atomic chains : parity oscillations in the conductance. 11.9. Concluding remarks. 11.10. Exercises -- 12. Spin-dependent transport in ferromagnetic atomic contacts. 12.1. Conductance of ferromagnetic atomic contacts. 12.2. Magnetoresistance of ferromagnetic atomic contacts. 12.3. Anisotropic magnetoresistance in atomic contacts. 12.4. Concluding remarks and open problems -- 13. Coherent transport through molecular junctions I : basic concepts. 13.1. Identifying the transport mechanism in single-molecule junctions. 13.2. Some lessons from the resonant tunneling model. 13.3. A two-level model. 13.4. Length dependence of the conductance. 13.5. Role of conjugation in [symbol]-electron systems. 13.6. Fano resonances. 13.7. Negative differential resistance. 13.8. Final remarks. 13.9. Exercises -- 14. Coherent transport through molecular junctions II : test-bed molecules. 14.1. Coherent transport through some test-bed molecules. 14.2. Metal-molecule contact : the role of anchoring groups. 14.3. Tuning chemically the conductance : the role of side-groups. 14.4. Controlled STM-based single-molecule experiments. 14.5. Conclusions and open problems -- 15. Single-molecule transistors : Coulomb blockade and Kondo physics. 15.1. Introduction. 15.2. Charging effects in transport through nanoscale devices. 15.3. Single-molecule three-terminal devices. 15.4. Coulomb blockade theory : constant interaction model. 15.5. Towards a theory of Coulomb blockade in molecular transistors. 15.6. Intermediate coupling : cotunneling and Kondo effect. 15.7. Single-molecule transistors : experimental results. 15.8. Exercises -- 16. Vibrationally-induced inelastic current I : experiment. 16.1. Introduction. 16.2. Inelastic electron tunneling spectroscopy (IETS). 16.3. Highly conductive junctions : point-contact spectroscopy (PCS). 16.4. Crossover between PCS and IETS. 16.5. Resonant inelastic electron tunneling spectroscopy (RIETS). 16.6. Summary of vibrational signatures -- 17. Vibrationally-induced inelastic current II : theory. 17.1. Weak electron-phonon coupling regime. 17.2. Intermediate electron-phonon coupling regime. 17.3. Strong electron-phonon coupling regime. 17.4. Concluding remarks and open problems. 17.5. Exercises -- 18. The hopping regime and transport through DNA molecules. 18.1. Signatures of the hopping regime. 18.2. Hopping transport in molecular junctions : experimental examples. 18.3. DNA-based molecular junctions. 18.4. Exercises -- 19. Beyond electrical conductance : shot noise and thermal transport. 19.1. Shot noise in atomic and molecular junctions. 19.2. Heating and heat conduction. 19.3. Thermoelectricity in molecular junctions -- 20. Optical properties of current-carrying molecular junctions. 20.1. Surface-enhanced Raman spectroscopy of molecular junctions. 20.2. Transport mechanisms in irradiated molecular junctions. 20.3. Theory of photon-assisted tunneling. 20.4. Experiments on radiation-induced transport in atomic and molecular junctions. 20.5. Resonant current amplification and other transport phenomena in ac driven molecular junctions. 20.6. Fluorescence from current-carrying molecular junctions. 20.7. Molecular optoelectronic devices. 20.8. Final remarks. 20.9. Exercises -- 21. What is missing in this book?

Molecular Electronics: An Introduction To Theory And Experiment (2nd Edition)

Molecular Electronics: An Introduction To Theory And Experiment (2nd Edition)
Title Molecular Electronics: An Introduction To Theory And Experiment (2nd Edition) PDF eBook
Author Elke Scheer
Publisher World Scientific
Total Pages 846
Release 2017-05-19
Genre Technology & Engineering
ISBN 9813226048

Download Molecular Electronics: An Introduction To Theory And Experiment (2nd Edition) Book in PDF, Epub and Kindle

Molecular Electronics is self-contained and unified in its presentation. It can be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included in this new edition are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.

Nanoscale Devices - Fundamentals and Applications

Nanoscale Devices - Fundamentals and Applications
Title Nanoscale Devices - Fundamentals and Applications PDF eBook
Author Rudolf Gross
Publisher Springer Science & Business Media
Total Pages 399
Release 2007-05-16
Genre Technology & Engineering
ISBN 1402051077

Download Nanoscale Devices - Fundamentals and Applications Book in PDF, Epub and Kindle

This book collects papers on the fundamentals and applications of nanoscale devices, first presented at the NATO Advanced Research Workshop on Nanoscale Devices – Fundamentals and Applications held in Kishinev, Moldova, in September 2004. The focus is on the synthesis and characterization of nanoscale magnetic materials; fundamental physics and materials aspects of solid-state nanostructures; development of novel device concepts and design principles for nanoscale devices; and on applications in electronics with emphasis on defence against the threat of terrorism.

Nanophysics, Nanoclusters and Nanodevices

Nanophysics, Nanoclusters and Nanodevices
Title Nanophysics, Nanoclusters and Nanodevices PDF eBook
Author Kimberly S. Gehar
Publisher Nova Publishers
Total Pages 310
Release 2006
Genre Science
ISBN 9781594548529

Download Nanophysics, Nanoclusters and Nanodevices Book in PDF, Epub and Kindle

Nanotechnology is a 'catch-all' description of activities at the level of atoms and molecules that have applications in the real world. A nanometre is a billionth of a metre, about 1/80,000 of the diameter of a human hair, or 10 times the diameter of a hydrogen atom. Nanotechnology is now used in precision engineering, new materials development as well as in electronics; electromechanical systems as well as mainstream biomedical applications in areas such as gene therapy, drug delivery and novel drug discovery techniques. This book presents the latest research in this frontier field.