Mathematical Principles for Scientific Computing and Visualization

Mathematical Principles for Scientific Computing and Visualization
Title Mathematical Principles for Scientific Computing and Visualization PDF eBook
Author Gerald Farin
Publisher CRC Press
Total Pages 286
Release 2008-10-21
Genre Computers
ISBN 1439865043

Download Mathematical Principles for Scientific Computing and Visualization Book in PDF, Epub and Kindle

This non-traditional introduction to the mathematics of scientific computation describes the principles behind the major methods, from statistics, applied mathematics, scientific visualization, and elsewhere, in a way that is accessible to a large part of the scientific community. Introductory material includes computational basics, a review of coo

Mathematical Principles for Scientific Computing and Visualization

Mathematical Principles for Scientific Computing and Visualization
Title Mathematical Principles for Scientific Computing and Visualization PDF eBook
Author Gerald Farin
Publisher CRC Press
Total Pages 296
Release 2008-10-21
Genre Mathematics
ISBN 156881321X

Download Mathematical Principles for Scientific Computing and Visualization Book in PDF, Epub and Kindle

This non-traditional introduction to the mathematics of scientific computation describes the principles behind the major methods, from statistics, applied mathematics, scientific visualization, and elsewhere, in a way that is accessible to a large part of the scientific community. Introductory material includes computational basics, a review of coordinate systems, an introduction to facets (planes and triangle meshes) and an introduction to computer graphics. The scientific computing part of the book covers topics in numerical linear algebra (basics, solving linear system, eigen-problems, SVD, and PCA) and numerical calculus (basics, data fitting, dynamic processes, root finding, and multivariate functions). The visualization component of the book is separated into three parts: empirical data, scalar values over 2D data, and volumes.

Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration

Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration
Title Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration PDF eBook
Author Torsten Möller
Publisher Springer Science & Business Media
Total Pages 348
Release 2009-06-12
Genre Computers
ISBN 3540499261

Download Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration Book in PDF, Epub and Kindle

The goal of visualization is the accurate, interactive, and intuitive presentation of data. Complex numerical simulations, high-resolution imaging devices and incre- ingly common environment-embedded sensors are the primary generators of m- sive data sets. Being able to derive scienti?c insight from data increasingly depends on having mathematical and perceptual models to provide the necessary foundation for effective data analysis and comprehension. The peer-reviewed state-of-the-art research papers included in this book focus on continuous data models, such as is common in medical imaging or computational modeling. From the viewpoint of a visualization scientist, we typically collaborate with an application scientist or engineer who needs to visually explore or study an object which is given by a set of sample points, which originally may or may not have been connected by a mesh. At some point, one generally employs low-order piecewise polynomial approximationsof an object, using one or several dependent functions. In order to have an understanding of a higher-dimensional geometrical “object” or function, ef?cient algorithms supporting real-time analysis and manipulation (- tation, zooming) are needed. Often, the data represents 3D or even time-varying 3D phenomena (such as medical data), and the access to different layers (slices) and structures (the underlying topology) comprising such data is needed.

Scientific Computing - An Introduction using Maple and MATLAB

Scientific Computing - An Introduction using Maple and MATLAB
Title Scientific Computing - An Introduction using Maple and MATLAB PDF eBook
Author Walter Gander
Publisher Springer Science & Business
Total Pages 926
Release 2014-04-23
Genre Mathematics
ISBN 3319043250

Download Scientific Computing - An Introduction using Maple and MATLAB Book in PDF, Epub and Kindle

Scientific computing is the study of how to use computers effectively to solve problems that arise from the mathematical modeling of phenomena in science and engineering. It is based on mathematics, numerical and symbolic/algebraic computations and visualization. This book serves as an introduction to both the theory and practice of scientific computing, with each chapter presenting the basic algorithms that serve as the workhorses of many scientific codes; we explain both the theory behind these algorithms and how they must be implemented in order to work reliably in finite-precision arithmetic. The book includes many programs written in Matlab and Maple – Maple is often used to derive numerical algorithms, whereas Matlab is used to implement them. The theory is developed in such a way that students can learn by themselves as they work through the text. Each chapter contains numerous examples and problems to help readers understand the material “hands-on”.

Scientific Computing with Case Studies

Scientific Computing with Case Studies
Title Scientific Computing with Case Studies PDF eBook
Author Dianne P. O'Leary
Publisher SIAM
Total Pages 377
Release 2009-01-01
Genre Mathematics
ISBN 0898717728

Download Scientific Computing with Case Studies Book in PDF, Epub and Kindle

This book is a practical guide to the numerical solution of linear and nonlinear equations, differential equations, optimization problems, and eigenvalue problems. It treats standard problems and introduces important variants such as sparse systems, differential-algebraic equations, constrained optimization, Monte Carlo simulations, and parametric studies. Stability and error analysis are emphasized, and the Matlab algorithms are grounded in sound principles of software design and understanding of machine arithmetic and memory management. Nineteen case studies provide experience in mathematical modeling and algorithm design, motivated by problems in physics, engineering, epidemiology, chemistry, and biology. The topics included go well beyond the standard first-course syllabus, introducing important problems such as differential-algebraic equations and conic optimization problems, and important solution techniques such as continuation methods. The case studies cover a wide variety of fascinating applications, from modeling the spread of an epidemic to determining truss configurations.

Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration

Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration
Title Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration PDF eBook
Author Torsten Möller
Publisher Springer
Total Pages 350
Release 2009-08-29
Genre Computers
ISBN 9783540860785

Download Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration Book in PDF, Epub and Kindle

The goal of visualization is the accurate, interactive, and intuitive presentation of data. Complex numerical simulations, high-resolution imaging devices and incre- ingly common environment-embedded sensors are the primary generators of m- sive data sets. Being able to derive scienti?c insight from data increasingly depends on having mathematical and perceptual models to provide the necessary foundation for effective data analysis and comprehension. The peer-reviewed state-of-the-art research papers included in this book focus on continuous data models, such as is common in medical imaging or computational modeling. From the viewpoint of a visualization scientist, we typically collaborate with an application scientist or engineer who needs to visually explore or study an object which is given by a set of sample points, which originally may or may not have been connected by a mesh. At some point, one generally employs low-order piecewise polynomial approximationsof an object, using one or several dependent functions. In order to have an understanding of a higher-dimensional geometrical “object” or function, ef?cient algorithms supporting real-time analysis and manipulation (- tation, zooming) are needed. Often, the data represents 3D or even time-varying 3D phenomena (such as medical data), and the access to different layers (slices) and structures (the underlying topology) comprising such data is needed.

Scientific Computing

Scientific Computing
Title Scientific Computing PDF eBook
Author Michael T. Heath
Publisher SIAM
Total Pages 567
Release 2018-11-14
Genre Mathematics
ISBN 1611975581

Download Scientific Computing Book in PDF, Epub and Kindle

This book differs from traditional numerical analysis texts in that it focuses on the motivation and ideas behind the algorithms presented rather than on detailed analyses of them. It presents a broad overview of methods and software for solving mathematical problems arising in computational modeling and data analysis, including proper problem formulation, selection of effective solution algorithms, and interpretation of results. In the 20 years since its original publication, the modern, fundamental perspective of this book has aged well, and it continues to be used in the classroom. This Classics edition has been updated to include pointers to Python software and the Chebfun package, expansions on barycentric formulation for Lagrange polynomial interpretation and stochastic methods, and the availability of about 100 interactive educational modules that dynamically illustrate the concepts and algorithms in the book. Scientific Computing: An Introductory Survey, Second Edition is intended as both a textbook and a reference for computationally oriented disciplines that need to solve mathematical problems.