Fundamentals of Dynamical Systems and Bifurcation Theory

Fundamentals of Dynamical Systems and Bifurcation Theory
Title Fundamentals of Dynamical Systems and Bifurcation Theory PDF eBook
Author Milan Medved̕
Publisher CRC Press
Total Pages 310
Release 1992-05-21
Genre Mathematics
ISBN 9780750301503

Download Fundamentals of Dynamical Systems and Bifurcation Theory Book in PDF, Epub and Kindle

This graduate level text explains the fundamentals of the theory of dynamical systems. After reading it you will have a good enough understanding of the area to study the extensive literature on dynamical systems. The book is self contained, as all the essential definitions and proofs are supplied, as are useful references: all the reader needs is a knowledge of basic mathematical analysis, algebra and topology. However, the first chapter contains an explanation of some of the methods of differential topology an understanding of which is essential to the theory of dynamical systems. A clear introduction to the field, which is equally useful for postgraduates in the natural sciences, engineering and economics.

Bifurcation Theory And Applications

Bifurcation Theory And Applications
Title Bifurcation Theory And Applications PDF eBook
Author Wang Shouhong
Publisher World Scientific
Total Pages 392
Release 2005-06-27
Genre Science
ISBN 9814480592

Download Bifurcation Theory And Applications Book in PDF, Epub and Kindle

This book covers comprehensive bifurcation theory and its applications to dynamical systems and partial differential equations (PDEs) from science and engineering, including in particular PDEs from physics, chemistry, biology, and hydrodynamics.The book first introduces bifurcation theories recently developed by the authors, on steady state bifurcation for a class of nonlinear problems with even order nondegenerate nonlinearities, regardless of the multiplicity of the eigenvalues, and on attractor bifurcations for nonlinear evolution equations, a new notion of bifurcation.With this new notion of bifurcation, many longstanding bifurcation problems in science and engineering are becoming accessible, and are treated in the second part of the book. In particular, applications are covered for a variety of PDEs from science and engineering, including the Kuramoto-Sivashinsky equation, the Cahn-Hillard equation, the Ginzburg-Landau equation, reaction-diffusion equations in biology and chemistry, the Benard convection problem, and the Taylor problem. The applications provide, on the one hand, general recipes for other applications of the theory addressed in this book, and on the other, full classifications of the bifurcated attractor and the global attractor as the control parameters cross certain critical values, dictated usually by the eigenvalues of the linearized problems. It is expected that the book will greatly advance the study of nonlinear dynamics for many problems in science and engineering.

Bifurcation Theory and Methods of Dynamical Systems

Bifurcation Theory and Methods of Dynamical Systems
Title Bifurcation Theory and Methods of Dynamical Systems PDF eBook
Author Dingjun Luo
Publisher World Scientific
Total Pages 484
Release 1997
Genre Science
ISBN 9789810220945

Download Bifurcation Theory and Methods of Dynamical Systems Book in PDF, Epub and Kindle

Dynamical bifurcation theory is concerned with the changes that occur in the global structure of dynamical systems as parameters are varied. This book makes recent research in bifurcation theory of dynamical systems accessible to researchers interested in this subject. In particular, the relevant results obtained by Chinese mathematicians are introduced as well as some of the works of the authors which may not be widely known. The focus is on the analytic approach to the theory and methods of bifurcations. The book prepares graduate students for further study in this area, and it serves as a ready reference for researchers in nonlinear sciences and applied mathematics.

Bifurcation Theory of Impulsive Dynamical Systems

Bifurcation Theory of Impulsive Dynamical Systems
Title Bifurcation Theory of Impulsive Dynamical Systems PDF eBook
Author Kevin E.M. Church
Publisher Springer Nature
Total Pages 388
Release 2021-03-24
Genre Mathematics
ISBN 3030645339

Download Bifurcation Theory of Impulsive Dynamical Systems Book in PDF, Epub and Kindle

This monograph presents the most recent progress in bifurcation theory of impulsive dynamical systems with time delays and other functional dependence. It covers not only smooth local bifurcations, but also some non-smooth bifurcation phenomena that are unique to impulsive dynamical systems. The monograph is split into four distinct parts, independently addressing both finite and infinite-dimensional dynamical systems before discussing their applications. The primary contributions are a rigorous nonautonomous dynamical systems framework and analysis of nonlinear systems, stability, and invariant manifold theory. Special attention is paid to the centre manifold and associated reduction principle, as these are essential to the local bifurcation theory. Specifying to periodic systems, the Floquet theory is extended to impulsive functional differential equations, and this permits an exploration of the impulsive analogues of saddle-node, transcritical, pitchfork and Hopf bifurcations. Readers will learn how techniques of classical bifurcation theory extend to impulsive functional differential equations and, as a special case, impulsive differential equations without delays. They will learn about stability for fixed points, periodic orbits and complete bounded trajectories, and how the linearization of the dynamical system allows for a suitable definition of hyperbolicity. They will see how to complete a centre manifold reduction and analyze a bifurcation at a nonhyperbolic steady state.

Dynamical Systems V

Dynamical Systems V
Title Dynamical Systems V PDF eBook
Author V.I. Arnold
Publisher Springer Science & Business Media
Total Pages 279
Release 2013-12-01
Genre Mathematics
ISBN 3642578845

Download Dynamical Systems V Book in PDF, Epub and Kindle

Bifurcation theory and catastrophe theory are two well-known areas within the field of dynamical systems. Both are studies of smooth systems, focusing on properties that seem to be manifestly non-smooth. Bifurcation theory is concerned with the sudden changes that occur in a system when one or more parameters are varied. Examples of such are familiar to students of differential equations, from phase portraits. Understanding the bifurcations of the differential equations that describe real physical systems provides important information about the behavior of the systems. Catastrophe theory became quite famous during the 1970's, mostly because of the sensation caused by the usually less than rigorous applications of its principal ideas to "hot topics", such as the characterization of personalities and the difference between a "genius" and a "maniac". Catastrophe theory is accurately described as singularity theory and its (genuine) applications. The authors of this book, previously published as Volume 5 of the Encyclopaedia, have given a masterly exposition of these two theories, with penetrating insight.

Bifurcation and Chaos in Engineering

Bifurcation and Chaos in Engineering
Title Bifurcation and Chaos in Engineering PDF eBook
Author Yushu Chen
Publisher Springer Science & Business Media
Total Pages 465
Release 2012-12-06
Genre Technology & Engineering
ISBN 1447115759

Download Bifurcation and Chaos in Engineering Book in PDF, Epub and Kindle

For the many different deterministic non-linear dynamic systems (physical, mechanical, technical, chemical, ecological, economic, and civil and structural engineering), the discovery of irregular vibrations in addition to periodic and almost periodic vibrations is one of the most significant achievements of modern science. An in-depth study of the theory and application of non-linear science will certainly change one's perception of numerous non-linear phenomena and laws considerably, together with its great effects on many areas of application. As the important subject matter of non-linear science, bifurcation theory, singularity theory and chaos theory have developed rapidly in the past two or three decades. They are now advancing vigorously in their applications to mathematics, physics, mechanics and many technical areas worldwide, and they will be the main subjects of our concern. This book is concerned with applications of the methods of dynamic systems and subharmonic bifurcation theory in the study of non-linear dynamics in engineering. It has grown out of the class notes for graduate courses on bifurcation theory, chaos and application theory of non-linear dynamic systems, supplemented with our latest results of scientific research and materials from literature in this field. The bifurcation and chaotic vibration of deterministic non-linear dynamic systems are studied from the viewpoint of non-linear vibration.

Differential Dynamical Systems, Revised Edition

Differential Dynamical Systems, Revised Edition
Title Differential Dynamical Systems, Revised Edition PDF eBook
Author James D. Meiss
Publisher SIAM
Total Pages 392
Release 2017-01-24
Genre Mathematics
ISBN 161197464X

Download Differential Dynamical Systems, Revised Edition Book in PDF, Epub and Kindle

Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics.? Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple?, Mathematica?, and MATLAB? software to give students practice with computation applied to dynamical systems problems.