Foundations for the Future in Mathematics Education

Foundations for the Future in Mathematics Education
Title Foundations for the Future in Mathematics Education PDF eBook
Author Richard A. Lesh
Publisher Routledge
Total Pages 437
Release 2020-10-07
Genre Education
ISBN 1000149501

Download Foundations for the Future in Mathematics Education Book in PDF, Epub and Kindle

The central question addressed in Foundations for the Future in Mathematics Education is this: What kind of understandings and abilities should be emphasized to decrease mismatches between the narrow band of mathematical understandings and abilities that are emphasized in mathematics classrooms and tests, and those that are needed for success beyond school in the 21st century? This is an urgent question. In fields ranging from aeronautical engineering to agriculture, and from biotechnologies to business administration, outside advisors to future-oriented university programs increasingly emphasize the fact that, beyond school, the nature of problem-solving activities has changed dramatically during the past twenty years, as powerful tools for computation, conceptualization, and communication have led to fundamental changes in the levels and types of mathematical understandings and abilities that are needed for success in such fields. For K-12 students and teachers, questions about the changing nature of mathematics (and mathematical thinking beyond school) might be rephrased to ask: If the goal is to create a mathematics curriculum that will be adequate to prepare students for informed citizenship—as well as preparing them for career opportunities in learning organizations, in knowledge economies, in an age of increasing globalization—how should traditional conceptions of the 3Rs be extended or reconceived? Overall, this book suggests that it is not enough to simply make incremental changes in the existing curriculum whose traditions developed out of the needs of industrial societies. The authors, beyond simply stating conclusions from their research, use results from it to describe promising directions for a research agenda related to this question. The volume is organized in three sections: *Part I focuses on naturalistic observations aimed at clarifying what kind of “mathematical thinking” people really do when they are engaged in “real life” problem solving or decision making situations beyond school. *Part II shifts attention toward changes that have occurred in kinds of elementary-but-powerful mathematical concepts, topics, and tools that have evolved recently—and that could replace past notions of “basics” by providing new foundations for the future. This section also initiates discussions about what it means to “understand” the preceding ideas and abilities. *Part III extends these discussions about meaning and understanding—and emphasizes teaching experiments aimed at investigating how instructional activities can be designed to facilitate the development of the preceding ideas and abilities. Foundations for the Future in Mathematics Education is an essential reference for researchers, curriculum developers, assessment experts, and teacher educators across the fields of mathematics and science education.

Foundations for the Future in Mathematics Education

Foundations for the Future in Mathematics Education
Title Foundations for the Future in Mathematics Education PDF eBook
Author Richard A. Lesh
Publisher Routledge
Total Pages 488
Release 2020-10-07
Genre Education
ISBN 1000106292

Download Foundations for the Future in Mathematics Education Book in PDF, Epub and Kindle

The central question addressed in Foundations for the Future in Mathematics Education is this: What kind of understandings and abilities should be emphasized to decrease mismatches between the narrow band of mathematical understandings and abilities that are emphasized in mathematics classrooms and tests, and those that are needed for success beyond school in the 21st century? This is an urgent question. In fields ranging from aeronautical engineering to agriculture, and from biotechnologies to business administration, outside advisors to future-oriented university programs increasingly emphasize the fact that, beyond school, the nature of problem-solving activities has changed dramatically during the past twenty years, as powerful tools for computation, conceptualization, and communication have led to fundamental changes in the levels and types of mathematical understandings and abilities that are needed for success in such fields. For K-12 students and teachers, questions about the changing nature of mathematics (and mathematical thinking beyond school) might be rephrased to ask: If the goal is to create a mathematics curriculum that will be adequate to prepare students for informed citizenship—as well as preparing them for career opportunities in learning organizations, in knowledge economies, in an age of increasing globalization—how should traditional conceptions of the 3Rs be extended or reconceived? Overall, this book suggests that it is not enough to simply make incremental changes in the existing curriculum whose traditions developed out of the needs of industrial societies. The authors, beyond simply stating conclusions from their research, use results from it to describe promising directions for a research agenda related to this question. The volume is organized in three sections: *Part I focuses on naturalistic observations aimed at clarifying what kind of “mathematical thinking” people really do when they are engaged in “real life” problem solving or decision making situations beyond school. *Part II shifts attention toward changes that have occurred in kinds of elementary-but-powerful mathematical concepts, topics, and tools that have evolved recently—and that could replace past notions of “basics” by providing new foundations for the future. This section also initiates discussions about what it means to “understand” the preceding ideas and abilities. *Part III extends these discussions about meaning and understanding—and emphasizes teaching experiments aimed at investigating how instructional activities can be designed to facilitate the development of the preceding ideas and abilities. Foundations for the Future in Mathematics Education is an essential reference for researchers, curriculum developers, assessment experts, and teacher educators across the fields of mathematics and science education.

Teaching Mathematics to Elementary School Children

Teaching Mathematics to Elementary School Children
Title Teaching Mathematics to Elementary School Children PDF eBook
Author Douglas E. Cruikshank
Publisher
Total Pages 396
Release 1988-01-01
Genre Education
ISBN 9780675206198

Download Teaching Mathematics to Elementary School Children Book in PDF, Epub and Kindle

Everybody Counts

Everybody Counts
Title Everybody Counts PDF eBook
Author National Research Council
Publisher National Academies Press
Total Pages 129
Release 1989-02-01
Genre Education
ISBN 0309039770

Download Everybody Counts Book in PDF, Epub and Kindle

Mathematics is the key to opportunity. No longer only the language of science, mathematics is now essential to business, finance, health, and defense. Yet because of the lack of mathematical literacy, many students are not prepared for tomorrow's jobs. Everybody Counts suggests solutions. Written for everyone concerned about our children's education, this book discusses why students in this country do not perform well in mathematics and outlines a comprehensive plan for revitalizing mathematics education in America, from kindergarten through college. single copy, $8.95; 2-9 copies, $7.50 each; 10 or more copies, $6.95 each (no other discounts apply)

Mathematics Learning in Early Childhood

Mathematics Learning in Early Childhood
Title Mathematics Learning in Early Childhood PDF eBook
Author National Research Council
Publisher National Academies Press
Total Pages 399
Release 2009-11-13
Genre Education
ISBN 0309147433

Download Mathematics Learning in Early Childhood Book in PDF, Epub and Kindle

Early childhood mathematics is vitally important for young children's present and future educational success. Research demonstrates that virtually all young children have the capability to learn and become competent in mathematics. Furthermore, young children enjoy their early informal experiences with mathematics. Unfortunately, many children's potential in mathematics is not fully realized, especially those children who are economically disadvantaged. This is due, in part, to a lack of opportunities to learn mathematics in early childhood settings or through everyday experiences in the home and in their communities. Improvements in early childhood mathematics education can provide young children with the foundation for school success. Relying on a comprehensive review of the research, Mathematics Learning in Early Childhood lays out the critical areas that should be the focus of young children's early mathematics education, explores the extent to which they are currently being incorporated in early childhood settings, and identifies the changes needed to improve the quality of mathematics experiences for young children. This book serves as a call to action to improve the state of early childhood mathematics. It will be especially useful for policy makers and practitioners-those who work directly with children and their families in shaping the policies that affect the education of young children.

Designs for Learning Environments of the Future

Designs for Learning Environments of the Future
Title Designs for Learning Environments of the Future PDF eBook
Author Michael Jacobson
Publisher Springer Science & Business Media
Total Pages 296
Release 2010-03-10
Genre Education
ISBN 0387882790

Download Designs for Learning Environments of the Future Book in PDF, Epub and Kindle

Few things are as certain as societal changes—and the pressing need for educators to prepare students with the knowledge and ways of thinking necessary for the challenges in a changing world. In the forward-thinking pages of Designs for Learning Environments of the Future, international teams of researchers present emerging developments and findings in learning sciences and technologies at the infrastructure, curricular, and classroom levels. Focusing on ideas about designing innovative environments for learning in areas such as biology, engineering, genetics, mathematics, and computer science, the book surveys a range of learning technologies being explored around the world—a spectrum as diverse as digital media, computer modeling, and 3D virtual worlds—and addresses challenges arising from their design and use. The editors’ holistic perspective frames these innovations as not only discrete technologies but as flexible learning environments that foster student engagement, participation, and collaboration. Contributors describe possibilities for teaching and learning in these and other cutting-edge areas: Working with hypermodels and model-based reasoning Using visual representations in teaching abstract concepts Designing strategies for learning in virtual worlds Supporting net-based collaborative teams Integrating innovative learning technologies into schools Developing personal learning communities Designs for Learning Environments of the Future will enhance the work of a wide range of professionals, including researchers and graduate students in the learning and cognitive sciences, and educators in the physical and social sciences.

Handbook of International Research in Mathematics Education

Handbook of International Research in Mathematics Education
Title Handbook of International Research in Mathematics Education PDF eBook
Author Lyn D. English
Publisher Routledge
Total Pages 830
Release 2010-04-02
Genre Education
ISBN 1135192839

Download Handbook of International Research in Mathematics Education Book in PDF, Epub and Kindle

The second edition continues the mission of bringing together important new mathematics education research that makes a difference in both theory and practice. It updates and extends the Handbook’s original key themes and issues for international research in mathematics education for the 21st century, namely: priorities in international mathematics education research lifelong democratic access to powerful mathematical ideas advances in research methodologies influences of advanced technologies. Each of these themes is examined in terms of learners, teachers, and learning contexts, with theory development being an important component of all these aspects. This edition also examines other catalysts that have gained increased import in recent years including a stronger focus on the teacher and teacher practice, a renewed interest in theory development, an increased focus on the mathematics needed in work place settings, and a proliferation of research designs and methodologies that have provided unprecedented opportunities for investigating (and ultimately improving) mathematical teaching and learning. This edition includes ten totally new chapters; all other chapters are thoroughly revised and updated.