Efficient High-Order Discretizations for Computational Fluid Dynamics

Efficient High-Order Discretizations for Computational Fluid Dynamics
Title Efficient High-Order Discretizations for Computational Fluid Dynamics PDF eBook
Author Martin Kronbichler
Publisher Springer Nature
Total Pages 314
Release 2021-01-04
Genre Technology & Engineering
ISBN 3030606104

Download Efficient High-Order Discretizations for Computational Fluid Dynamics Book in PDF, Epub and Kindle

The book introduces modern high-order methods for computational fluid dynamics. As compared to low order finite volumes predominant in today's production codes, higher order discretizations significantly reduce dispersion errors, the main source of error in long-time simulations of flow at higher Reynolds numbers. A major goal of this book is to teach the basics of the discontinuous Galerkin (DG) method in terms of its finite volume and finite element ingredients. It also discusses the computational efficiency of high-order methods versus state-of-the-art low order methods in the finite difference context, given that accuracy requirements in engineering are often not overly strict. The book mainly addresses researchers and doctoral students in engineering, applied mathematics, physics and high-performance computing with a strong interest in the interdisciplinary aspects of computational fluid dynamics. It is also well-suited for practicing computational engineers who would like to gain an overview of discontinuous Galerkin methods, modern algorithmic realizations, and high-performance implementations.

High-Order Methods for Computational Physics

High-Order Methods for Computational Physics
Title High-Order Methods for Computational Physics PDF eBook
Author Timothy J. Barth
Publisher Springer Science & Business Media
Total Pages 594
Release 2013-03-09
Genre Mathematics
ISBN 366203882X

Download High-Order Methods for Computational Physics Book in PDF, Epub and Kindle

The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining chal lenges facing the field of computational fluid dynamics. In structural me chanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the com putation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order ac curacy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence sug gests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Cen ter. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18,1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25,1998 at the NASA Ames Research Center in the United States.

Adaptive High-order Methods in Computational Fluid Dynamics

Adaptive High-order Methods in Computational Fluid Dynamics
Title Adaptive High-order Methods in Computational Fluid Dynamics PDF eBook
Author Z. J. Wang
Publisher World Scientific
Total Pages 471
Release 2011
Genre Science
ISBN 9814313181

Download Adaptive High-order Methods in Computational Fluid Dynamics Book in PDF, Epub and Kindle

This book consists of important contributions by world-renowned experts on adaptive high-order methods in computational fluid dynamics (CFD). It covers several widely used, and still intensively researched methods, including the discontinuous Galerkin, residual distribution, finite volume, differential quadrature, spectral volume, spectral difference, PNPM, and correction procedure via reconstruction methods. The main focus is applications in aerospace engineering, but the book should also be useful in many other engineering disciplines including mechanical, chemical and electrical engineering. Since many of these methods are still evolving, the book will be an excellent reference for researchers and graduate students to gain an understanding of the state of the art and remaining challenges in high-order CFD methods.

High-Order Methods for Incompressible Fluid Flow

High-Order Methods for Incompressible Fluid Flow
Title High-Order Methods for Incompressible Fluid Flow PDF eBook
Author M. O. Deville
Publisher Cambridge University Press
Total Pages 532
Release 2002-08-15
Genre Mathematics
ISBN 9780521453097

Download High-Order Methods for Incompressible Fluid Flow Book in PDF, Epub and Kindle

Publisher Description

Computational Fluid Dynamics

Computational Fluid Dynamics
Title Computational Fluid Dynamics PDF eBook
Author Jiyuan Tu
Publisher Elsevier
Total Pages 498
Release 2023-05-09
Genre Science
ISBN 0323939392

Download Computational Fluid Dynamics Book in PDF, Epub and Kindle

Computational Fluid Dynamics: A Practical Approach, Fourth Edition is an introduction to computational fluid dynamics (CFD) fundamentals and commercial CFD software to solve engineering problems. The book is designed for a wide variety of engineering students new to CFD, but is also ideal for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step-by-step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. This new edition has been updated throughout, with new content and improved figures, examples and problems. Updated throughout, with new case studies, examples, references, and corrections according to readers’ and reviewers’ feedback Delivers the latest developments in CFD including the high-order and reduced-order modeling approach, machine learning–accelerated CFD, full coverage of high-speed fluid dynamics, and the meshless approaches to provide a broader overview of the application areas where CFD can be used Reorganized and rewritten to better meet the needs of CFD instructors and students Online resources include all lecturing and guest lecturing PPTs, computer lab practicing with step-by-step and screenshot guidelines, assignment and course project details, answers for review questions in each chapter, a new bonus chapter featuring detailed case studies, and result discussion

Computational Fluid Dynamics 2010

Computational Fluid Dynamics 2010
Title Computational Fluid Dynamics 2010 PDF eBook
Author Alexander Kuzmin
Publisher Springer Science & Business Media
Total Pages 902
Release 2011-05-03
Genre Technology & Engineering
ISBN 3642178847

Download Computational Fluid Dynamics 2010 Book in PDF, Epub and Kindle

The International Conference on Computational Fluid Dynamics is held every two years and brings together physicists, mathematicians and engineers to review and share recent advances in mathematical and computational techniques for modeling fluid flow. The proceedings of the 2010 conference (ICCFD6) held in St Petersburg, Russia, contain a selection of refereed contributions and are meant to serve as a source of reference for all those interested in the state of the art in computational fluid dynamics.

Spectral Methods

Spectral Methods
Title Spectral Methods PDF eBook
Author Claudio Canuto
Publisher Springer Science & Business Media
Total Pages 616
Release 2007-06-30
Genre Mathematics
ISBN 3540307281

Download Spectral Methods Book in PDF, Epub and Kindle

Following up the seminal Spectral Methods in Fluid Dynamics, Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics contains an extensive survey of the essential algorithmic and theoretical aspects of spectral methods for complex geometries. These types of spectral methods were only just emerging at the time the earlier book was published. The discussion of spectral algorithms for linear and nonlinear fluid dynamics stability analyses is greatly expanded. The chapter on spectral algorithms for incompressible flow focuses on algorithms that have proven most useful in practice, has much greater coverage of algorithms for two or more non-periodic directions, and shows how to treat outflow boundaries. Material on spectral methods for compressible flow emphasizes boundary conditions for hyperbolic systems, algorithms for simulation of homogeneous turbulence, and improved methods for shock fitting. This book is a companion to Spectral Methods: Fundamentals in Single Domains.