Distributed Optimisation for Multi-Robot Cooperative Manipulation Control in Dynamic Environments

Distributed Optimisation for Multi-Robot Cooperative Manipulation Control in Dynamic Environments
Title Distributed Optimisation for Multi-Robot Cooperative Manipulation Control in Dynamic Environments PDF eBook
Author Yanhao He
Publisher Logos Verlag Berlin GmbH
Total Pages 188
Release 2022-12-15
Genre Technology & Engineering
ISBN 3832554408

Download Distributed Optimisation for Multi-Robot Cooperative Manipulation Control in Dynamic Environments Book in PDF, Epub and Kindle

Since the manipulation tasks for robotic systems become more and more complicated, multi-robot cooperation has been attracting much attention recently. Furthermore, under the trend of human-robot co-existence, collision-free motion control is now also desired on multi-robot groups. This dissertation aims to design a novel distributed optimal control framework to deal with multi-robot cooperative manipulation of rigid objects in dynamic environments. Besides object transportation, the control scheme also tackles obstacle avoidance, joint-space performance optimisation and internal force suppression. The proposed control framework has a two-layer structure, with a distributed optimisation algorithm in the kinematic layer for generating proper joint configuration references, followed by a robot motion controller in the dynamic control layer to fulfil the reference. An indirect and a direct distributed optimisation method are developed for the kinematic layer, both of which are computationally and communicationally efficient. In the dynamic control layer, impedance control is employed for safe physical interaction. As another highlight, abundant experiments carried out on a multi-arm test bench have demonstrated the effectiveness of the presented control schemes under various environmental and task settings. The recorded computation time shows the applicability of the control framework in practice.

Distributed Cooperative Control

Distributed Cooperative Control
Title Distributed Cooperative Control PDF eBook
Author Yi Guo
Publisher John Wiley & Sons
Total Pages 234
Release 2017-04-03
Genre Science
ISBN 1119216095

Download Distributed Cooperative Control Book in PDF, Epub and Kindle

Examines new cooperative control methodologies tailored to real-world applications in various domains such as in communication systems, physics systems, and multi-robotic systems Provides the fundamental mechanism for solving collective behaviors in naturally-occurring systems as well as cooperative behaviors in man-made systems Discusses cooperative control methodologies using real-world applications, including semi-conductor laser arrays, mobile sensor networks, and multi-robotic systems Includes results from the research group at the Stevens Institute of Technology to show how advanced control technologies can impact challenging issues, such as high energy systems and oil spill monitoring

Distributed Optimization-Based Control of Multi-Agent Networks in Complex Environments

Distributed Optimization-Based Control of Multi-Agent Networks in Complex Environments
Title Distributed Optimization-Based Control of Multi-Agent Networks in Complex Environments PDF eBook
Author Minghui Zhu
Publisher Springer
Total Pages 133
Release 2015-06-11
Genre Technology & Engineering
ISBN 3319190725

Download Distributed Optimization-Based Control of Multi-Agent Networks in Complex Environments Book in PDF, Epub and Kindle

This book offers a concise and in-depth exposition of specific algorithmic solutions for distributed optimization based control of multi-agent networks and their performance analysis. It synthesizes and analyzes distributed strategies for three collaborative tasks: distributed cooperative optimization, mobile sensor deployment and multi-vehicle formation control. The book integrates miscellaneous ideas and tools from dynamic systems, control theory, graph theory, optimization, game theory and Markov chains to address the particular challenges introduced by such complexities in the environment as topological dynamics, environmental uncertainties, and potential cyber-attack by human adversaries. The book is written for first- or second-year graduate students in a variety of engineering disciplines, including control, robotics, decision-making, optimization and algorithms and with backgrounds in aerospace engineering, computer science, electrical engineering, mechanical engineering and operations research. Researchers in these areas may also find the book useful as a reference.

Cooperative and Intelligent Control of Multi-robot Systems Using Machine Learning

Cooperative and Intelligent Control of Multi-robot Systems Using Machine Learning
Title Cooperative and Intelligent Control of Multi-robot Systems Using Machine Learning PDF eBook
Author
Publisher
Total Pages
Release 2005
Genre
ISBN

Download Cooperative and Intelligent Control of Multi-robot Systems Using Machine Learning Book in PDF, Epub and Kindle

This thesis investigates cooperative and intelligent control of autonomous multi-robot systems in a dynamic, unstructured and unknown environment and makes significant original contributions with regard to self-deterministic learning for robot cooperation, evolutionary optimization of robotic actions, improvement of system robustness, vision-based object tracking, and real-time performance. A distributed multi-robot architecture is developed which will facilitate operation of a cooperative multi-robot system in a dynamic and unknown environment in a self-improving, robust, and real-time manner. It is a fully distributed and hierarchical architecture with three levels. By combining several popular AI, soft computing, and control techniques such as learning, planning, reactive paradigm, optimization, and hybrid control, the developed architecture is expected to facilitate effective autonomous operation of cooperative multi-robot systems in a dynamically changing, unknown, and unstructured environment. A machine learning technique is incorporated into the developed multi-robot system for self-deterministic and self-improving cooperation and coping with uncertainties in the environment. A modified Q-learning algorithm termed Sequential Q-learning with Kalman Filtering (SQKF) is developed in the thesis, which can provide fast multi-robot learning. By arranging the robots to learn according to a predefined sequence, modeling the effect of the actions of other robots in the work environment as Gaussian white noise and estimating this noise online with a Kalman filter, the SQKF algorithm seeks to solve several key problems in multi-robot learning. As a part of low-level sensing and control in the proposed multi-robot architecture, a fast computer vision algorithm for color-blob tracking is developed to track multiple moving objects in the environment. By removing the brightness and saturation information in an image and filtering unrelated information based on statistical f.

Cooperative and Intelligent Control of Multi-robot Systems Using Machine Learning

Cooperative and Intelligent Control of Multi-robot Systems Using Machine Learning
Title Cooperative and Intelligent Control of Multi-robot Systems Using Machine Learning PDF eBook
Author
Publisher
Total Pages
Release 2005
Genre
ISBN

Download Cooperative and Intelligent Control of Multi-robot Systems Using Machine Learning Book in PDF, Epub and Kindle

This thesis investigates cooperative and intelligent control of autonomous multi-robot systems in a dynamic, unstructured and unknown environment and makes significant original contributions with regard to self-deterministic learning for robot cooperation, evolutionary optimization of robotic actions, improvement of system robustness, vision-based object tracking, and real-time performance. A distributed multi-robot architecture is developed which will facilitate operation of a cooperative multi-robot system in a dynamic and unknown environment in a self-improving, robust, and real-time manner. It is a fully distributed and hierarchical architecture with three levels. By combining several popular AI, soft computing, and control techniques such as learning, planning, reactive paradigm, optimization, and hybrid control, the developed architecture is expected to facilitate effective autonomous operation of cooperative multi-robot systems in a dynamically changing, unknown, and unstructured environment. A machine learning technique is incorporated into the developed multi-robot system for self-deterministic and self-improving cooperation and coping with uncertainties in the environment. A modified Q-learning algorithm termed Sequential Q-learning with Kalman Filtering (SQKF) is developed in the thesis, which can provide fast multi-robot learning. By arranging the robots to learn according to a predefined sequence, modeling the effect of the actions of other robots in the work environment as Gaussian white noise and estimating this noise online with a Kalman filter, the SQKF algorithm seeks to solve several key problems in multi-robot learning. As a part of low-level sensing and control in the proposed multi-robot architecture, a fast computer vision algorithm for color-blob tracking is developed to track multiple moving objects in the environment. By removing the brightness and saturation information in an image and filtering unrelated information based on statistical f.

Formation Control

Formation Control
Title Formation Control PDF eBook
Author Hyo-Sung Ahn
Publisher Springer
Total Pages 360
Release 2019-03-29
Genre Technology & Engineering
ISBN 3030151875

Download Formation Control Book in PDF, Epub and Kindle

This monograph introduces recent developments in formation control of distributed-agent systems. Eschewing the traditional concern with the dynamic characteristics of individual agents, the book proposes a treatment that studies the formation control problem in terms of interactions among agents including factors such as sensing topology, communication and actuation topologies, and computations. Keeping pace with recent technological advancements in control, communications, sensing and computation that have begun to bring the applications of distributed-systems theory out of the industrial sphere and into that of day-to-day life, this monograph provides distributed control algorithms for a group of agents that may behave together. Unlike traditional control laws that usually require measurements with respect to a global coordinate frame and communications between a centralized operation center and agents, this book provides control laws that require only relative measurements and communications between agents without interaction with a centralized operator. Since the control algorithms presented in this book do not require any global sensing and any information exchanges with a centralized operation center, they can be realized in a fully distributed way, which significantly reduces the operation and implementation costs of a group of agents. Formation Control will give both students and researchers interested in pursuing this field a good grounding on which to base their work.

Distributed Control of Multi-robot Teams

Distributed Control of Multi-robot Teams
Title Distributed Control of Multi-robot Teams PDF eBook
Author
Publisher
Total Pages 6
Release 1998
Genre
ISBN

Download Distributed Control of Multi-robot Teams Book in PDF, Epub and Kindle

This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since such cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, they describe the implementation of this architecture on a team of physical mobile robots performing a cooperative baton passing task. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes during the task.