Convex Analysis for Optimization

Convex Analysis for Optimization
Title Convex Analysis for Optimization PDF eBook
Author Jan Brinkhuis
Publisher Springer Nature
Total Pages 278
Release 2020-05-05
Genre Business & Economics
ISBN 3030418049

Download Convex Analysis for Optimization Book in PDF, Epub and Kindle

This textbook offers graduate students a concise introduction to the classic notions of convex optimization. Written in a highly accessible style and including numerous examples and illustrations, it presents everything readers need to know about convexity and convex optimization. The book introduces a systematic three-step method for doing everything, which can be summarized as "conify, work, deconify". It starts with the concept of convex sets, their primal description, constructions, topological properties and dual description, and then moves on to convex functions and the fundamental principles of convex optimization and their use in the complete analysis of convex optimization problems by means of a systematic four-step method. Lastly, it includes chapters on alternative formulations of optimality conditions and on illustrations of their use. "The author deals with the delicate subjects in a precise yet light-minded spirit... For experts in the field, this book not only offers a unifying view, but also opens a door to new discoveries in convexity and optimization...perfectly suited for classroom teaching." Shuzhong Zhang, Professor of Industrial and Systems Engineering, University of Minnesota

Convex Analysis and Optimization

Convex Analysis and Optimization
Title Convex Analysis and Optimization PDF eBook
Author Dimitri Bertsekas
Publisher Athena Scientific
Total Pages 560
Release 2003-03-01
Genre Mathematics
ISBN 1886529450

Download Convex Analysis and Optimization Book in PDF, Epub and Kindle

A uniquely pedagogical, insightful, and rigorous treatment of the analytical/geometrical foundations of optimization. The book provides a comprehensive development of convexity theory, and its rich applications in optimization, including duality, minimax/saddle point theory, Lagrange multipliers, and Lagrangian relaxation/nondifferentiable optimization. It is an excellent supplement to several of our books: Convex Optimization Theory (Athena Scientific, 2009), Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2016), Network Optimization (Athena Scientific, 1998), and Introduction to Linear Optimization (Athena Scientific, 1997). Aside from a thorough account of convex analysis and optimization, the book aims to restructure the theory of the subject, by introducing several novel unifying lines of analysis, including: 1) A unified development of minimax theory and constrained optimization duality as special cases of duality between two simple geometrical problems. 2) A unified development of conditions for existence of solutions of convex optimization problems, conditions for the minimax equality to hold, and conditions for the absence of a duality gap in constrained optimization. 3) A unification of the major constraint qualifications allowing the use of Lagrange multipliers for nonconvex constrained optimization, using the notion of constraint pseudonormality and an enhanced form of the Fritz John necessary optimality conditions. Among its features the book: a) Develops rigorously and comprehensively the theory of convex sets and functions, in the classical tradition of Fenchel and Rockafellar b) Provides a geometric, highly visual treatment of convex and nonconvex optimization problems, including existence of solutions, optimality conditions, Lagrange multipliers, and duality c) Includes an insightful and comprehensive presentation of minimax theory and zero sum games, and its connection with duality d) Describes dual optimization, the associated computational methods, including the novel incremental subgradient methods, and applications in linear, quadratic, and integer programming e) Contains many examples, illustrations, and exercises with complete solutions (about 200 pages) posted at the publisher's web site http://www.athenasc.com/convexity.html

Convex Analysis and Nonlinear Optimization

Convex Analysis and Nonlinear Optimization
Title Convex Analysis and Nonlinear Optimization PDF eBook
Author Jonathan Borwein
Publisher Springer Science & Business Media
Total Pages 316
Release 2010-05-05
Genre Mathematics
ISBN 0387312560

Download Convex Analysis and Nonlinear Optimization Book in PDF, Epub and Kindle

Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.

Convex Analysis and Global Optimization

Convex Analysis and Global Optimization
Title Convex Analysis and Global Optimization PDF eBook
Author Hoang Tuy
Publisher Springer Science & Business Media
Total Pages 346
Release 2013-03-09
Genre Mathematics
ISBN 1475728093

Download Convex Analysis and Global Optimization Book in PDF, Epub and Kindle

Due to the general complementary convex structure underlying most nonconvex optimization problems encountered in applications, convex analysis plays an essential role in the development of global optimization methods. This book develops a coherent and rigorous theory of deterministic global optimization from this point of view. Part I constitutes an introduction to convex analysis, with an emphasis on concepts, properties and results particularly needed for global optimization, including those pertaining to the complementary convex structure. Part II presents the foundation and application of global search principles such as partitioning and cutting, outer and inner approximation, and decomposition to general global optimization problems and to problems with a low-rank nonconvex structure as well as quadratic problems. Much new material is offered, aside from a rigorous mathematical development. Audience: The book is written as a text for graduate students in engineering, mathematics, operations research, computer science and other disciplines dealing with optimization theory. It is also addressed to all scientists in various fields who are interested in mathematical optimization.

Convex Optimization

Convex Optimization
Title Convex Optimization PDF eBook
Author Stephen P. Boyd
Publisher Cambridge University Press
Total Pages 744
Release 2004-03-08
Genre Business & Economics
ISBN 9780521833783

Download Convex Optimization Book in PDF, Epub and Kindle

Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Convex Optimization Algorithms

Convex Optimization Algorithms
Title Convex Optimization Algorithms PDF eBook
Author Dimitri Bertsekas
Publisher Athena Scientific
Total Pages 576
Release 2015-02-01
Genre Mathematics
ISBN 1886529280

Download Convex Optimization Algorithms Book in PDF, Epub and Kindle

This book provides a comprehensive and accessible presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book is aimed at students, researchers, and practitioners, roughly at the first year graduate level. It is similar in style to the author's 2009"Convex Optimization Theory" book, but can be read independently. The latter book focuses on convexity theory and optimization duality, while the present book focuses on algorithmic issues. The two books share notation, and together cover the entire finite-dimensional convex optimization methodology. To facilitate readability, the statements of definitions and results of the "theory book" are reproduced without proofs in Appendix B.

Convex Optimization Theory

Convex Optimization Theory
Title Convex Optimization Theory PDF eBook
Author Dimitri Bertsekas
Publisher Athena Scientific
Total Pages 256
Release 2009-06-01
Genre Mathematics
ISBN 1886529310

Download Convex Optimization Theory Book in PDF, Epub and Kindle

An insightful, concise, and rigorous treatment of the basic theory of convex sets and functions in finite dimensions, and the analytical/geometrical foundations of convex optimization and duality theory. Convexity theory is first developed in a simple accessible manner, using easily visualized proofs. Then the focus shifts to a transparent geometrical line of analysis to develop the fundamental duality between descriptions of convex functions in terms of points, and in terms of hyperplanes. Finally, convexity theory and abstract duality are applied to problems of constrained optimization, Fenchel and conic duality, and game theory to develop the sharpest possible duality results within a highly visual geometric framework. This on-line version of the book, includes an extensive set of theoretical problems with detailed high-quality solutions, which significantly extend the range and value of the book. The book may be used as a text for a theoretical convex optimization course; the author has taught several variants of such a course at MIT and elsewhere over the last ten years. It may also be used as a supplementary source for nonlinear programming classes, and as a theoretical foundation for classes focused on convex optimization models (rather than theory). It is an excellent supplement to several of our books: Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2017), Network Optimization(Athena Scientific, 1998), Introduction to Linear Optimization (Athena Scientific, 1997), and Network Flows and Monotropic Optimization (Athena Scientific, 1998).