Advanced Finite Element Methods with Applications

Advanced Finite Element Methods with Applications
Title Advanced Finite Element Methods with Applications PDF eBook
Author Thomas Apel
Publisher Springer
Total Pages 428
Release 2019-06-28
Genre Mathematics
ISBN 3030142442

Download Advanced Finite Element Methods with Applications Book in PDF, Epub and Kindle

Finite element methods are the most popular methods for solving partial differential equations numerically, and despite having a history of more than 50 years, there is still active research on their analysis, application and extension. This book features overview papers and original research articles from participants of the 30th Chemnitz Finite Element Symposium, which itself has a 40-year history. Covering topics including numerical methods for equations with fractional partial derivatives; isogeometric analysis and other novel discretization methods, like space-time finite elements and boundary elements; analysis of a posteriori error estimates and adaptive methods; enhancement of efficient solvers of the resulting systems of equations, discretization methods for partial differential equations on surfaces; and methods adapted to applications in solid and fluid mechanics, it offers readers insights into the latest results.

Advanced Finite Element Method in Structural Engineering

Advanced Finite Element Method in Structural Engineering
Title Advanced Finite Element Method in Structural Engineering PDF eBook
Author Yu-Qiu Long
Publisher Springer Science & Business Media
Total Pages 706
Release 2009-09-29
Genre Technology & Engineering
ISBN 3642003168

Download Advanced Finite Element Method in Structural Engineering Book in PDF, Epub and Kindle

Advanced Finite Element Method in Structural Engineering systematically introduces the research work on the Finite Element Method (FEM), which was completed by Prof. Yu-qiu Long and his research group in the past 25 years. Seven original theoretical achievements - for instance, the Generalized Conforming Element method, to name one - and their applications in the fields of structural engineering and computational mechanics are discussed in detail. The book also shows the new strategies for avoiding five difficulties that exist in traditional FEM (shear-locking problem of thick plate elements; sensitivity problem to mesh distortion; non-convergence problem of non-conforming elements; accuracy loss problem of stress solutions by displacement-based elements; stress singular point problem) by utilizing foregoing achievements.

The Finite Element Method and Applications in Engineering Using ANSYS®

The Finite Element Method and Applications in Engineering Using ANSYS®
Title The Finite Element Method and Applications in Engineering Using ANSYS® PDF eBook
Author Erdogan Madenci
Publisher Springer
Total Pages 657
Release 2015-02-10
Genre Technology & Engineering
ISBN 1489975500

Download The Finite Element Method and Applications in Engineering Using ANSYS® Book in PDF, Epub and Kindle

This textbook offers theoretical and practical knowledge of the finite element method. The book equips readers with the skills required to analyze engineering problems using ANSYS®, a commercially available FEA program. Revised and updated, this new edition presents the most current ANSYS® commands and ANSYS® screen shots, as well as modeling steps for each example problem. This self-contained, introductory text minimizes the need for additional reference material by covering both the fundamental topics in finite element methods and advanced topics concerning modeling and analysis. It focuses on the use of ANSYS® through both the Graphics User Interface (GUI) and the ANSYS® Parametric Design Language (APDL). Extensive examples from a range of engineering disciplines are presented in a straightforward, step-by-step fashion. Key topics include: • An introduction to FEM • Fundamentals and analysis capabilities of ANSYS® • Fundamentals of discretization and approximation functions • Modeling techniques and mesh generation in ANSYS® • Weighted residuals and minimum potential energy • Development of macro files • Linear structural analysis • Heat transfer and moisture diffusion • Nonlinear structural problems • Advanced subjects such as submodeling, substructuring, interaction with external files, and modification of ANSYS®-GUI Electronic supplementary material for using ANSYS® can be found at http://link.springer.com/book/10.1007/978-1-4899-7550-8. This convenient online feature, which includes color figures, screen shots and input files for sample problems, allows for regeneration on the reader’s own computer. Students, researchers, and practitioners alike will find this an essential guide to predicting and simulating the physical behavior of complex engineering systems."

Advanced Finite Element Technologies

Advanced Finite Element Technologies
Title Advanced Finite Element Technologies PDF eBook
Author Jörg Schröder
Publisher Springer
Total Pages 236
Release 2016-05-19
Genre Mathematics
ISBN 3319319256

Download Advanced Finite Element Technologies Book in PDF, Epub and Kindle

The book presents an overview of the state of research of advanced finite element technologies. Besides the mathematical analysis, the finite element development and their engineering applications are shown to the reader. The authors give a survey of the methods and technologies concerning efficiency, robustness and performance aspects. The book covers the topics of mathematical foundations for variational approaches and the mathematical understanding of the analytical requirements of modern finite element methods. Special attention is paid to finite deformations, adaptive strategies, incompressible, isotropic or anisotropic material behavior and the mathematical and numerical treatment of the well-known locking phenomenon. Beyond that new results for the introduced approaches are presented especially for challenging nonlinear problems.

Finite Element Method

Finite Element Method
Title Finite Element Method PDF eBook
Author Michael R. Gosz
Publisher CRC Press
Total Pages 430
Release 2017-03-27
Genre Technology & Engineering
ISBN 1351992031

Download Finite Element Method Book in PDF, Epub and Kindle

The finite element method (FEM) is the dominant tool for numerical analysis in engineering, yet many engineers apply it without fully understanding all the principles. Learning the method can be challenging, but Mike Gosz has condensed the basic mathematics, concepts, and applications into a simple and easy-to-understand reference. Finite Element Method: Applications in Solids, Structures, and Heat Transfer navigates through linear, linear dynamic, and nonlinear finite elements with an emphasis on building confidence and familiarity with the method, not just the procedures. This book demystifies the assumptions made, the boundary conditions chosen, and whether or not proper failure criteria are used. It reviews the basic math underlying FEM, including matrix algebra, the Taylor series expansion and divergence theorem, vectors, tensors, and mechanics of continuous media. The author discusses applications to problems in solid mechanics, the steady-state heat equation, continuum and structural finite elements, linear transient analysis, small-strain plasticity, and geometrically nonlinear problems. He illustrates the material with 10 case studies, which define the problem, consider appropriate solution strategies, and warn against common pitfalls. Additionally, 35 interactive virtual reality modeling language files are available for download from the CRC Web site. For anyone first studying FEM or for those who simply wish to deepen their understanding, Finite Element Method: Applications in Solids, Structures, and Heat Transfer is the perfect resource.

Finite Element Analysis for Biomedical Engineering Applications

Finite Element Analysis for Biomedical Engineering Applications
Title Finite Element Analysis for Biomedical Engineering Applications PDF eBook
Author Z. C. Yang
Publisher CRC Press
Total Pages 302
Release 2019-03-14
Genre Mathematics
ISBN 0429592159

Download Finite Element Analysis for Biomedical Engineering Applications Book in PDF, Epub and Kindle

Finite element analysis has been widely applied to study biomedical problems. This book aims to simulate some common medical problems using finite element advanced technologies, which establish a base for medical researchers to conduct further investigations. This book consists of four main parts: (1) bone, (2) soft tissues, (3) joints, and (4) implants. Each part starts with the structure and function of the biology and then follows the corresponding finite element advanced features, such as anisotropic nonlinear material, multidimensional interpolation, XFEM, fiber enhancement, UserHyper, porous media, wear, and crack growth fatigue analysis. The final section presents some specific biomedical problems, such as abdominal aortic aneurysm, intervertebral disc, head impact, knee contact, and SMA cardiovascular stent. All modeling files are attached in the appendixes of the book. This book will be helpful to graduate students and researchers in the biomedical field who engage in simulations of biomedical problems. The book also provides all readers with a better understanding of current advanced finite element technologies. Details finite element modeling of bone, soft tissues, joints, and implants Presents advanced finite element technologies, such as fiber enhancement, porous media, wear, and crack growth fatigue analysis Discusses specific biomedical problems, such as abdominal aortic aneurysm, intervertebral disc, head impact, knee contact, and SMA cardiovascular stent Explains principles for modeling biology Provides various descriptive modeling files

Higher-Order Finite Element Methods

Higher-Order Finite Element Methods
Title Higher-Order Finite Element Methods PDF eBook
Author Pavel Solin
Publisher CRC Press
Total Pages 404
Release 2003-07-28
Genre Mathematics
ISBN 0203488040

Download Higher-Order Finite Element Methods Book in PDF, Epub and Kindle

The finite element method has always been a mainstay for solving engineering problems numerically. The most recent developments in the field clearly indicate that its future lies in higher-order methods, particularly in higher-order hp-adaptive schemes. These techniques respond well to the increasing complexity of engineering simulations and